Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (3): 602-611.doi: 10.23919/JSEE.2020.000036
• Control Theory and Application • Previous Articles Next Articles
Zhibin ZHANG1,2(), Haibo JI1,*(), Jie YANG2()
Received:
2019-05-21
Online:
2020-06-30
Published:
2020-06-30
Contact:
Haibo JI
E-mail:BrownPKU@aliyun.com;jihb@ustc.edu.cn;nudtyang@163.com
About author:
ZHANG Zhibin was born in 1975. He received his B.S. degree from Peking University in 1997 and M.E. degree in 2013 from University of Science and Technology of China, respectively. He is currently pursuing his Ph.D. degree at University of Science and Technology of China. He is now a professor at State Key Laboratory of Astronautics Dynamics. His research interests include navigation guidance and control of spacecraft. E-mail: Supported by:
Zhibin ZHANG, Haibo JI, Jie YANG. Autonomous optical navigation of Mars probe aided by one-way Doppler measurements in capture stage[J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 602-611.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Autonomous navigation errors of Mars probe (the optical observation errors are set as 10 arc-seconds)"
Observing target | Position error/km | Velocity error/(m/s) | |||||||
Radial | Tangential | Normal | Total | Radial | Tangential | Normal | Total | ||
Phobos | 5.958 | 7.289 | 0.361 | 9.422 | 0.206 | 0.207 | 0.016 | 0.293 | |
Phobos+Doppler | 6.788 | 6.977 | 0.375 | 9.741 | 0.061 | 0.206 | 0.015 | 0.216 | |
Deimos | 4.369 | 7.819 | 1.171 | 9.033 | 0.201 | 0.195 | 0.009 | 0.281 | |
Deimos+Doppler | 6.683 | 7.359 | 0.863 | 9.978 | 0.061 | 0.211 | 0.007 | 0.219 | |
Mars | 175.992 | 7.193 | 0.434 | 176.139 | 3.876 | 0.651 | 0.017 | 3.931 | |
Mars+Doppler | 12.446 | 7.472 | 0.226 | 14.518 | 0.063 | 0.212 | 0.014 | 0.222 |
Table 3
Autonomous navigation errors of Mars probe (the optical observation errors are set as 100 arc-seconds)"
Observing target | Position error/km | Velocity error/(m/s) | |||||||
Radial | Tangential | Normal | Total | Radial | Tangential | Normal | Total | ||
Phobos | 53.074 | 72.416 | 3.864 | 89.865 | 1.448 | 2.102 | 0.144 | 2.557 | |
Phobos+Doppler | 22.104 | 70.888 | 3.504 | 74.337 | 0.665 | 2.073 | 0.181 | 2.184 | |
Deimos | 48.842 | 77.765 | 11.773 | 92.583 | 1.838 | 1.962 | 0.089 | 2.689 | |
Deimos+Doppler | 14.871 | 77.413 | 7.074 | 79.145 | 0.659 | 2.098 | 0.093 | 2.201 | |
Mars | 354.891 | 71.489 | 4.584 | 362.048 | 4.589 | 2.737 | 0.154 | 5.346 | |
Mars+Doppler | 27.948 | 74.137 | 2.915 | 79.284 | 0.663 | 2.097 | 0.124 | 2.203 |
1 | GIPSMAN A, GUEHNAN M, KOGAN A. Autonomous navi-gation and guidance system for low thrust driven deep space missions. Acta Astronautica, 1999, 44 (2): 353- 364. |
2 | WU W R, WANG D Y, NING X L, et al. Autonomous navigation principle and technology for deep space probe. Beijing: China Astronautic Publishing House, 2011. |
3 |
NING X L, GUI M Z, FANG J C, et al. A novel differential Doppler measurement-aided autonomous celestial navigation method for spacecraft during approach phase. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (2): 587- 597.
doi: 10.1109/TAES.2017.2651558 |
4 | MIGUEL A, MUNOZ B, IVAAN P. Framework for fast expe-rimental testing of autonomous navigation algorithms. Applied Sciences, 2019, 9 (7): 1997- 2005. |
5 |
ZENG J J, QIN L, HU Y, et al. Integrating a path planner and an adaptive motion controller for navigation in dynamic environments. Applied Sciences, 2019, 9 (7): 1384- 1391.
doi: 10.3390/app9071384 |
6 | BHASKARAN S. Autonomous navigation for deep space missions. Spaceops, 2012, 10 (2): 1- 13. |
7 | OWEN W M. Methods of optical navigation. Proc. of the 36th Conference on AIAA/AAS Spaceflight Mechanics, 2011, 211- 215. |
8 |
LYNAM A E, KLOSTER K W, LONGUSKI J M. Multiple-satellite-aided capture trajectories at Jupiter using the Laplace resonance. Celestial Mechanics and Dynamical Astronomy, 2011, 109 (1): 59- 84.
doi: 10.1007/s10569-010-9307-1 |
9 | MAURETTE M. Mars rover autonomous navigation. Autonomous Robots, 2003, 14 (2): 199- 208. |
10 |
KOHLHASE C E. Autonomous navigation preparation for future unmanned space mission. Journal of Navigation, 1975, 22 (1): 16- 34.
doi: 10.1002/j.2161-4296.1975.tb01240.x |
11 |
NING X L, LI Z, YANG Y Q, et al. Analysis of Ephemeris errors in autonomous celestial navigation during Mars approach phase. Journal of Navigation, 2017, 70 (3): 505- 526.
doi: 10.1017/S0373463316000734 |
12 |
RONG J, XU L P, ZHANG H, et al. Augmentation method of XPNAV in Mars orbit based on Phobos and Dermos observations. Advances in Space Research, 2016, 58 (9): 1864- 1878.
doi: 10.1016/j.asr.2016.07.021 |
13 | JERATH N, OHTAKAY H. Mariner IX optical navigation using Mars lit limb. Journal of Spacecraft, 2012, 11 (7): 505- 511. |
14 |
MA P B, JIANG F H, BAOYIN H X. Autonomous navigation of Mars probes by combining optical data of viewing Martian Moons and SST data. Journal of Navigation, 2015, 68 (6): 1019- 1040.
doi: 10.1017/S0373463315000272 |
15 |
YAN H T, DAI Z, HU Y P, et al. Optical measurement aided autonomous navigation for pinpoint Mars landing. Optik, 2018, 157, 976- 987.
doi: 10.1016/j.ijleo.2017.11.089 |
16 | MA P B, WANG T S, JIANG F H, et al. Autonomous navigation of Mars probes by single X-ray pulsar measurement and optical data of viewing Martian moons. Journal of Navigation, 2016, 70 (1): 18- 32. |
17 | ACTON C H. Processing onboard optical data for planetary approach navigation. Journal of Spacecraft and Rockets, 2012, 9 (10): 746- 750. |
18 |
HUANG X Y, CUI H T, CUI P Y. An autonomous optical navigation and guidance for soft landing on asteroids. Acta Astronautica, 2004, 54 (10): 763- 771.
doi: 10.1016/j.actaastro.2003.09.001 |
19 | LOWMAN A E, STAUDER J L. Stray light lessons learned from the Mars reconnaissance orbiter's optical navigation camera. Proc. of the Conference on the SPIE and Location, 2004, 1123- 1130. |
20 | ELACHI C. The critical role of communications and navigation technologies to the success of space science enterprise missions. Proc. of the Keynote Address Descanso International Symposium, 1999, 3263- 3269. |
21 | RIEDEL J E, BHASKARAN S, DESAI S. Autonomous optical navigation (AutoNav) DS 1 technology validation report. Pasadena: Jet Propulsion Laboratory, 2000. |
22 |
ANTREASIAN P G, BAIRD D T, BORDER J S. 2001 Mars Odyssey orbit determination during interplanetary cruise. Journal of Spacecraft and Rockets, 2005, 42 (3): 394- 405.
doi: 10.2514/1.15222 |
23 |
LIU J, MA J, TIAN J W, et al. X-ray pulsar navigation method for spacecraft with pulsar direction error. Advances in Space Research, 2010, 46 (11): 1409- 1417.
doi: 10.1016/j.asr.2010.08.019 |
24 | WANG Y D, ZHENG W, SUN S M, et al. X-ray pulsar-based navigation using time-differenced measurement. Aerospace Science and Technology, 2014, 36 (3): 27- 35. |
25 |
WANG Y D, ZHENG W, SUN S M, et al. X-ray pulsar-based navigation system with the errors in the planetary ephemerides for Earth-orbiting satellite. Advances in Space Research, 2013, 51 (12): 2394- 2404.
doi: 10.1016/j.asr.2013.02.007 |
26 | EASTON R L, BUISSON J A. The contribution of navigation technology satellite to the global positioning system. Journal of Neurophysiology, 1979, 107 (7): 1881- 1889. |
27 |
WEI W H, GAO Z H, GAO S S, et al. A SINS/SRS/GNS autonomous integrated navigation system based on spectral redshift velocity measurements. Sensors, 2018, 18 (4): 1145- 1152.
doi: 10.3390/s18041145 |
28 |
NING X L, WANG L H, BAI X B, et al. Autonomous satellite navigation using starlight refraction angle measurements. Advances in Space Research, 2013, 51 (9): 1761- 1772.
doi: 10.1016/j.asr.2012.12.008 |
29 |
WHITE R L, THURMAN S W, BARNES F A. Autonomous satellite navigation using observations of starlight atmospheric refraction. Journal of Navigation, 1985, 32 (4): 317- 333.
doi: 10.1002/j.2161-4296.1985.tb00914.x |
30 |
WANG H Y, GAO Z Q, WANG T F, et al. Study on command attitude law for refracted starlight observation in SINS/RCNS integrated navigation. Advances in Space Research, 2018, 62 (3): 721- 731.
doi: 10.1016/j.asr.2018.05.001 |
31 | WANG X L, WANG B, LI H N. An autonomous navigation scheme based on geomagnetic and starlight for small satellite. Acta Astronautica, 2012, 81 (3): 40- 50. |
32 |
MORTARI D, CONWAY D. Single-point position estimation in interplanetary trajectories using star trackers. Celestial Mechanics and Dynamical Astronomy, 2017, 128 (1): 115- 130.
doi: 10.1007/s10569-016-9738-4 |
33 |
LIU J, FANG J C, MA X, et al. X-ray pulsar/starlight Doppler integrated navigation for formation flight with ephemerides errors. IEEE Aerospace and Electronic Systems Magazine, 2015, 30 (3): 30- 39.
doi: 10.1109/MAES.2014.140074 |
34 | LIU R X, ZHAN J Q. Research on autonomous navigation algorithms for the Mars probe via speed and angle measurement sensors. Journal of Deep Space Exploration, 2016, 3 (3): 219- 224. |
35 | MING X, WANG X L, LI Q S. Autonomous celestial navigation scheme design for Mars probe's capture phase. Aero Weaponry, 2017, 30 (3): 41- 46. |
36 | ZHANG X W, WANG D Y, HUANG X Y. Study on the selection of the beacon asteroids in autonomous optical navigation for interplanetary exploration. Journal of Astronautics, 2009, 30 (3): 947- 952. |
37 | WU G Y, YANG Y, WANG X J, et al. To improve orbit determination and prediction accuracy for Mars probe with optical measurement during cruise phase. Journal of Astronautics, 2014, 35 (2): 151- 156. |
38 | ZHENG W M, MA M L, WANG W B. High-precision passive Doppler measurement method and its application in deep space explorer. Journal of Astronautics, 2013, 34 (11): 1462- 1467. |
39 | VALLADO D A. Fundamentals of astrodynamics and applications. Chicago: Donnelley and Sons Company, 1997. |
40 | KAEHLER A, BRADSKI G. Learning OpenCV 3: computer vision in C++ with the OpenCV Library. Boston: O'Reilly Media, lnc, 2016. |
[1] | Jin Liu, Jie Ma, and Jinwen Tian. Pulsar/CNS integrated navigation based on federated UKF [J]. Journal of Systems Engineering and Electronics, 2010, 21(4): 675-681. |
[2] | Dan Li, Jianye Liu, Li Qiao, and Zhi Xiong. Fault tolerant navigation method for satellite based on information fusion and unscented Kalman filter [J]. Journal of Systems Engineering and Electronics, 2010, 21(4): 682-687. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||