Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (3): 658-667.doi: 10.23919/JSEE.2021.000056
• SYSTEMS ENGINEERING • Previous Articles Next Articles
Ruiyang LI(), Ming HE*(), Hongyue HE(), Zhixue WANG(), Cheng YANG()
Received:
2020-03-17
Online:
2021-06-18
Published:
2021-07-26
Contact:
Ming HE
E-mail:15601591998@163.com;heming@126.com;hehy2008@sina.com;wzxcx@163.com;978008436@qq.com
About author:
Supported by:
Ruiyang LI, Ming HE, Hongyue HE, Zhixue WANG, Cheng YANG. A branch and price algorithm for the robust WSOS scheduling problem[J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 658-667.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Detailed data of the scheme"
Activity (requirement) | Participation System (capability) | Duration/h |
1(2) | Sys3(1), Sys4(1) | 0?4 |
2(3) | Sys6(2), Sys7(2) | 0?2 |
3(4) | Sys1(2), Sys2(2) | 8?11 |
4(2) | Sys5(2) | 2?3 |
5(4) | Sys2(2), Sys6(2) | 4?6 |
6(2) | Sys3(1), Sys7(2) | 3?6 |
7(3) | Sys5(2), Sys8(1) | 6?8 |
8(3) | Sys4(1), Sys6(2) | 6?10 |
9(3) | Sys9(3) | 11?13 |
10(3) | Sys5(2), Sys8(1) | 10?14 |
Table 2
iMOPSE dataset instances"
Group | Instance | Activity | System | Relation | Capability |
G1 | 100-10-48-15 | 100 | 10 | 48 | 15 |
100-20-46-15 | 100 | 20 | 46 | 15 | |
100-5-20-9-D3 | 100 | 5 | 20 | 9 | |
G2 | 200-10-50-9 | 200 | 10 | 50 | 9 |
200-10-85-15 | 200 | 10 | 85 | 15 | |
200-20-97-9 | 200 | 20 | 97 | 9 | |
200-40-133-15 | 200 | 40 | 133 | 15 | |
200-40-45-9 | 200 | 40 | 45 | 9 | |
200-40-90-9 | 200 | 40 | 90 | 9 | |
200-40-91-15 | 200 | 40 | 91 | 15 |
Table 3
Performance comparison of the brand-and-price algorithm and CPLEX"
Instance | CPLEX | Branch-and-price | GAP/% | ||||||||
ACT | OPT | Node | col. in MP | ACT in MP | ACT | LB | OPT | Node | |||
100-10-48-15 | 1751 | 792 | 9701 | 961 | 145 | 1134 | 792 | 792 | 14 | 0.00 | |
100-20-46-15 | 1954 | 600 | 14984 | 1443 | 180 | 1395 | 600 | 600 | 38 | 0.00 | |
100-5-20-9-D3 | 1648 | 1200 | 12505 | 727 | 135 | 749 | 1200 | 1200 | 25 | 0.00 | |
200-10-50-9 | 2561 | 1560 | 19400 | 1626 | 202 | 1683 | 1560 | 1560 | 112 | 0.00 | |
200-10-85-15 | 2948 | 1464 | 22441 | 3548 | 242 | 1 990 | 1464 | 1464 | 154 | 0.00 | |
200-20-97-9 | 3474 | 888 | 27832 | 5137 | 212 | 2451 | 888 | 888 | 189 | 0.00 | |
200-40-133-15 | 3600 | 720 | 31576 | 7126 | 295 | 2846 | 648 | 648 | 265 | ?10.00 | |
200-40-45-9 | 3600 | 696 | 37072 | 9552 | 362 | 3399 | 624 | 624 | 378 | ?10.34 | |
200-40-90-9 | 3600 | 696 | 39098 | 11660 | 450 | 3600 | 576 | 600 | 466 | ?13.79 | |
200-40-91-15 | 3600 | 672 | 41687 | 14235 | 481 | 3600 | 552 | 576 | 555 | ?14.29 |
1 |
EDWARD C, AMIT S Next-generation smart environments: from system of systems to data ecosystems. IEEE Intelligent Systems, 2018, 33 (3): 69- 76.
doi: 10.1109/MIS.2018.033001418 |
2 |
ZHAO Q S, DING J Y, LI J C, et al Mission-oriented scheme generation method for weapon system of systems. IEEE Access, 2020, 8, 70981- 70996.
doi: 10.1109/ACCESS.2020.2987062 |
3 | WANG H, LAPPAS N H, GOUNARIS C E Multi-mode resource constrained project scheduling with alternative prerequisites: new models and computational studies. Industrial & Engineering Chemistry Research, 2019, 58 (39): 18253- 18266. |
4 |
CHEN P H, WENG H J A two-phase GA model for resource-constrained project scheduling. Automation in Construction, 2009, 18 (4): 485- 498.
doi: 10.1016/j.autcon.2008.11.003 |
5 |
NAJID N M, ARROUB M An efficient algorithm for the multi-mode resource constrained project scheduling problem with resource flexibility. International Journal of Mathematics in Operational Research, 2010, 2 (6): 748- 761.
doi: 10.1504/IJMOR.2010.035497 |
6 | WANG L, FANG C An effective estimation of distribution algorithm for the multi-mode resource-constrained project scheduling problem. Computers & Operations Research, 2012, 39 (2): 449- 460. |
7 | AYODELE M, MCCALL J, REGNIER C O. RK-EDA: a novel random key based estimation of distribution algorithm. Proc. of the International Conference on Parallel Problem Solving from Nature, 2016: 849−858. |
8 | ADAMU P I, AGARANA M C, OKAGBUE H. Learning heuristic for solving multi-mode resource-constrained project scheduling problems. Proc. of the International Multiconference of Engineers and Computer Scientists, 2018: 14−16. |
9 | AFSHAR M R, SHAHHOSSEINI V, SEBT M H A genetic algorithm with a new local search method for solving the multimode resource-constrained project scheduling problem. International Journal of Construction Management, 2019, 19 (3): 1- 9. |
10 |
ROSON J H, KULEJEWSKI J E A hybrid approach for solving multi-mode resource-constrained project scheduling problem in construction. Open Engineering, 2019, 9 (1): 7- 13.
doi: 10.1515/eng-2019-0006 |
11 | RATAJCZAK R E Experimental evaluation of agent-based approaches to solving multi-mode resource-constrained project scheduling problem. Cybernetics and Systems, 2018, 49 (2): 1- 21. |
12 |
ZSOLT T K, SZALKAI I Multimode resource-constrained project scheduling in flexible projects. Journal of Global Optimization, 2020, 76 (1): 211- 241.
doi: 10.1007/s10898-019-00832-8 |
13 | VAHDANI H, SHAMS A Multi-mode capital-constrained project payment scheduling model considering bonus-penalty structure. International Journal of Management Science & Engineering Management, 2020, 15 (1): 17- 25. |
14 |
SPRECHER A, DREXL A Multi-mode resource-constrained project scheduling by a simple, general and powerful sequencing algorithm. European Journal of Operational Research, 1998, 107 (2): 431- 450.
doi: 10.1016/S0377-2217(97)00348-2 |
15 | KYRIAKIDIS T S, KOPANOS G M, GEORGIADIS M C MILP formulations for single- and multi-mode resource-constrained project scheduling problems. Computers & Chemical Engineering, 2012, 36 (1): 369- 385. |
16 |
JOSE C, MARIO V Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers. European Journal of Operational Research, 2011, 213 (1): 73- 82.
doi: 10.1016/j.ejor.2011.03.019 |
17 |
SCHNELL A, HARTL R F On the efficient modeling and solution of the multi-mode resource-constrained project scheduling problem with generalized precedence relations. OR Spectrum, 2016, 38 (2): 283- 303.
doi: 10.1007/s00291-015-0419-6 |
18 | BOFILL M, COLL J, SUY J, et al Solving the multi-mode resource-constrained project scheduling problem with SMT. Proc.of the IEEE International Conference on Tools with Artificial Intelligence, 2017, 239- 246. |
19 | ALTINTAS C, AZIZOGLU M A branch and bound algorithm for a multi-mode project scheduling problem with a single non-renewable resource. International Journal of Information Technology, 2020, 11 (2): 55- 70. |
20 | LI R Y, WANG Z X, YU M G, et al Multi-objective portfolio optimization of system of systems based on robust capabilities. Systems Engineering and Electronics, 2019, 41 (5): 103- 111. |
21 |
LEUS R, HERROELEN W The complexity of machine scheduling for stability with a single disrupted job. Operations Research Letters, 2005, 33 (2): 151- 156.
doi: 10.1016/j.orl.2004.04.008 |
22 |
KAVEH A, KHANZADI M, ALIPOUR M Fuzzy resource constraint project scheduling problem using CBO and CSS algorithms. International Journal of Civil Engineering, 2016, 14 (5): 325- 337.
doi: 10.1007/s40999-016-0031-4 |
23 | BIRJANDI A, MOUSAVI S M Fuzzy resource-constrained project scheduling with multiple routes: a heuristic solution. Automation in Construction, 2019, 100 (4): 84- 102. |
24 |
ANGELA C, YUN C L, JOSE D P An entropy-based upper bound methodology for robust predictive multi-mode RCPSP schedules. Entropy, 2014, 16 (9): 5032- 5067.
doi: 10.3390/e16095032 |
25 |
SHAN W X, PENG Z X, LIU J M, et al An exact algorithm for inland container transportation network design. Transportation Research Part B: Methodological, 2020, 135, 41- 82.
doi: 10.1016/j.trb.2020.02.011 |
26 |
DRAUDVILIENE L, MESKUOTIENE A, RAISUTIS R, et al The capability assessment of the spectrum decomposition technique for measurements of the group velocity of lamb waves. Journal of Nondestructive Evaluation, 2018, 37 (2): 29- 42.
doi: 10.1007/s10921-018-0484-2 |
27 | LIAO W Z, FU Y X. Min-max regret criterion-based robust model for the permutation flow-shop scheduling problem. Engineering Optimization, 2020, 52(4): 687−700. |
28 |
LI R Y, HE M, HE H Y, et al Heuristic column generation for designing an express circular packaging distribution network. Operational Research, 2020, 1, 1- 24.
doi: 10.1007/s12351-020-00570-w |
29 | NANNICINI G, SARTOR G, TRAVERSI E, et al An exact algorithm for robust influence maximization. Mathematical Programming, 2020, 183 (1): 419- 453. |
30 |
REIHANEH M, GHONIEM A A branch-cut-and-price algorithm for the generalized vehicle routing problem. Journal of the Operational Research Society, 2018, 69 (2): 307- 318.
doi: 10.1057/s41274-017-0231-6 |
31 |
MUNARI P, MORENO A, JONATHAN D, et al The robust vehicle routing problem with time windows: compact formulation and branch-price-and-cut method. Transportation Science, 2019, 53 (4): 1043- 1066.
doi: 10.1287/trsc.2018.0886 |
32 |
WEI Q, WU Y Dynamic programming algorithms for two- machine hybrid flow-shop scheduling with a given job sequence and deadline. IEEE Access, 2020, 8, 89964- 89975.
doi: 10.1109/ACCESS.2020.2993857 |
33 |
WANG Q, LIU C C, ZHENG L A column-generation-based algorithm for a resource-constrained project scheduling problem with a fractional shared resource. Engineering Optimization, 2020, 52(5), 798- 816.
doi: 10.1080/0305215X.2019.1610946 |
34 |
MYSZKOWSKI P B, MAREK E S, OLECH U P, et al Hybrid ant colony optimization in solving multi-skill resource-constrained project scheduling problem. Soft Computing, 2015, 19 (12): 3599- 3619.
doi: 10.1007/s00500-014-1455-x |
35 |
EYNDE R, VANHOUCKE M Resource-constrained multi-project scheduling: benchmark datasets and decoupled scheduling. Journal of Scheduling, 2020, 23, 301- 325.
doi: 10.1007/s10951-020-00651-w |
[1] | Naikang YU, Bin QIAN, Rong HU, Yuwang CHEN, Ling WANG. Solving open vehicle problem with time window by hybrid column generation algorithm [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 997-1009. |
[2] | Fan YUE, Shiji SONG, Peng JIA, Guangping WU, Han ZHAO. Robust single machine scheduling problem with uncertain job due dates for industrial mass production [J]. Journal of Systems Engineering and Electronics, 2020, 31(2): 350-358. |
[3] | Jianfei Ding, Guangya Si, Guoqiang Yang, Yang Liu, and Xiao Liu. Visualization analysis of the capability of weapon system of systems for multi-dimensional indicators [J]. Systems Engineering and Electronics, 2017, 28(2): 292-300. |
[4] | Ke Wang, and Fajie Wei. Robust data envelopment analysis based MCDM with the consideration of uncertain data [J]. Journal of Systems Engineering and Electronics, 2010, 21(6): 981-989. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||