
Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (4): 938-950.doi: 10.23919/JSEE.2022.000091
• DEFENCE ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
					
													Tianjie LEI1,2(
), Jiabao WANG1,2,3(
), Pingping HUANG4,5,*(
), Weixian TAN4,5(
), Yaolong QI4,5(
), Wei XU4,5(
), Chun ZHAO1(
)
												  
						
						
						
					
				
Received:2021-03-29
															
							
															
							
															
							
																	Online:2022-08-30
															
							
																	Published:2022-08-30
															
						Contact:
								Pingping HUANG   
																	E-mail:leitj@iwhr.com;Jiabao_wang@126.com;hpp@imut.edu.cn;wxtan@imut.edu.cn;qiyaolong@imut.edu.cn;xuwei1983@imut.edu.cn;zhaochun@iwhr.com
																					About author:Supported by:Tianjie LEI, Jiabao WANG, Pingping HUANG, Weixian TAN, Yaolong QI, Wei XU, Chun ZHAO. Time-varying baseline error correction method for ground-based micro-deformation monitoring radar[J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 938-950.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
| 1 |  
											BURGMANN R, ROSEN P A, FIELDING E J Synthetic aperture radar interferometry to measure Earth ’s surface topography and its deformation. Annual Review of Earth and Planetary Sciences, 2000, 28 (1): 169- 209. 
																							 doi: 10.1146/annurev.earth.28.1.169  | 
										
| 2 |  
											XU J Q, SUN H P Earth’s deformation due to the dynamical perturbations of the fluid outer core. Acta Seismologica Sinica, 2002, 15 (4): 414- 424. 
																							 doi: 10.1007/s11589-002-0034-x  | 
										
| 3 |  
											FROUDE M J, PETLEY D N Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 2018, 18 (8): 2161- 2181. 
																							 doi: 10.5194/nhess-18-2161-2018  | 
										
| 4 |  
											ZHANG M, NIE L, XU Y, et al A thrust load-caused landslide triggered by excavation of the slope toe: a case study of the Chaancun landslide in Dalian city, China. Arabian Journal of Geosciences, 2015, 8 (9): 6555- 6565. 
																							 doi: 10.1007/s12517-014-1710-6  | 
										
| 5 |  
											SAITO H, KORUP O, UCHIDA T, et al Rainfall conditions, typhoon frequency, and contemporary landslide erosion in Japan. Geology, 2014, 42 (11): 999- 1002. 
																							 doi: 10.1130/G35680.1  | 
										
| 6 |  
											LIU J K, SHIH P T Topographic correction of wind-driven rainfall for landslide analysis in central Taiwan with validation from aerial and satellite optical images. Remote Sensing, 2013, 5 (6): 2571- 2589. 
																							 doi: 10.3390/rs5062571  | 
										
| 7 |  
											VAN DER GEEST K Landslide loss and damage in Sindhupalchok District, Nepal: comparing income groups with implications for compensation and relief. International Journal of Disaster Risk Science, 2018, 9 (2): 157- 166. 
																							 doi: 10.1007/s13753-018-0178-5  | 
										
| 8 |  
											PAUDEL P P, OMURA H, KUBOTA T, et al Landslide damage and disaster management system in Nepal. Disaster Prevention and Management, 2003, 12 (5): 413- 419. 
																							 doi: 10.1108/09653560310507235  | 
										
| 9 |  
											BAJEK R, MATSUDA Y, OKADA N Japan ’s Jishu-bosai-soshiki community activities: analysis of its role in participatory community disaster risk management. Natural Hazards, 2008, 44 (2): 281- 292. 
																							 doi: 10.1007/s11069-007-9107-4  | 
										
| 10 |  
											HUANG M, QI S Z, SHANG G D Karst landslides hazard during 1940–2002 in the mountainous region of Guizhou Province, Southwest China. Natural Hazards, 2012, 60 (2): 781- 784. 
																							 doi: 10.1007/s11069-011-0018-z  | 
										
| 11 | EDVIN A, DJAMIL Y S Application of multivariate Anfis for daily rainfall prediction: influences of training data size. Makara Journal of Science, 2008, 12 (1): 7- 14. | 
| 12 |  
											ATZENI C, BARLA M, PIERACCINI M Early warning monitoring of natural and engineered slopes with ground-based synthetic-aperture radar. Rock Mechanics and Rock Engineering, 2015, 48 (1): 235- 246. 
																							 doi: 10.1007/s00603-014-0554-4  | 
										
| 13 |  
											CARLA T, INTRIERI E, DI T F, et al Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses. Landslides, 2017, 14 (2): 517- 534. 
																							 doi: 10.1007/s10346-016-0731-5  | 
										
| 14 | XU Q, TANG M G, HUANG R Q. Monitoring, early warning and emergency disposal of large landslides. Beijing: Science Press, 2015. (in Chinese) | 
| 15 |  
											BO H, CHEN J Y, ZHANG X F Monitoring the land subsidence area in a coastal urban area with InSAR and GNSS. Sensors, 2019, 19 (14): 3181. 
																							 doi: 10.3390/s19143181  | 
										
| 16 |  
											WANG Y P, HONG W, ZHANG Y, et al Ground-based differential interferometry SAR: a review. IEEE Geoscience and Remote Sensing Magazine, 2020, 8 (1): 43- 70. 
																							 doi: 10.1109/MGRS.2019.2963169  | 
										
| 17 |  
											PIERACCINI M, MICCINESI L, ROJHANI N A GBSAR operating in monostatic and bistatic modalities for retrieving the displacement vector. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (9): 1494- 1498. 
																							 doi: 10.1109/LGRS.2017.2717857  | 
										
| 18 | GE D Q, DAI K R, GUO Z C, et al Early identification of serious geological hazards with integrated remote sensing technologies: thoughts and recommendations. Geomatics and Information Science of Wuhan University, 2019, 44 (7): 949- 956. | 
| 19 | HU F M, WU J C Detecting spatio-temporal urban surface changes using identified temporary coherent scatterers. Journal of Systems Engineering and Electronics, 2021, 32 (6): 1304- 1317. | 
| 20 | FLORENTINO A, CHARAPAQUI S, JARA C, et al Implementation of a ground-based synthetic aperture radar (GB-SAR) for landslide monitoring: system description and preliminary results. Proc. of the IEEE XXIII International Congress on Electronics, Electrical Engineering and Computing, 2016, 1- 6. | 
| 21 |  
											GRAHAM J D, ERIK E Development of an early-warning time-of-failure analysis methodology for open-pit mine slopes utilizing ground-based slope stability radar monitoring data. Canadian Geotechnical Journal, 2015, 52 (4): 515- 529. 
																							 doi: 10.1139/cgj-2014-0028  | 
										
| 22 | ASLAN G, FOUMELIS M, RAUCOULES D Landslide mapping and monitoring using persistent scatterer interferometry (PSI) technique in the French Alps. Remote Sensing, 2020, 12 (8): 1305. | 
| 23 |  
											TRAGLIA F, INTRIERI E, NOLESINI T, et al The ground-based InSAR monitoring system at Stromboli volcano: linking changes in displacement rate and intensity of persistent volcanic activity. Bulletin of Volcanology, 2014, 76 (2): 786. 
																							 doi: 10.1007/s00445-013-0786-2  | 
										
| 24 |  
											SOGA K, ALONSO E, YERRO A, et al Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Geotechnique, 2016, 66 (3): 248- 273. 
																							 doi: 10.1680/jgeot.15.LM.005  | 
										
| 25 | ZENG T, DENG Y K, HU C, et al Development state and application examples of ground-based differential interferometric radar. Journal of Radars, 2019, 8 (1): 154- 170. | 
| 26 | LI W L, XU Q Historical retrospection of deformation of large rocky landslides and its enlightenment. Geomatics and Information Science of Wuhan University, 2019, 44 (7): 1043- 1053. | 
| 27 |  
											SIDLE R C, BOGAARD T A Dynamic earth system and ecological controls of rainfall-initiated landslides. Earth-science Reviews, 2016, 159, 275- 291. 
																							 doi: 10.1016/j.earscirev.2016.05.013  | 
										
| 28 |  
											DAI K R, LI Z H, XU Q, et al Entering the era of earth observation-based landslide warning systems: a novel and exciting framework. IEEE Geoscience and Remote Sensing Magazine, 2020, 8 (1): 136- 153. 
																							 doi: 10.1109/MGRS.2019.2954395  | 
										
| 29 |  
											GLASTONBURY J, FELL R Geotechnical characteristics of large slow, very slow, and extremely slow landslides. Canadian Geotechnical Journal, 2008, 45 (7): 984- 1005. 
																							 doi: 10.1139/T08-021  | 
										
| 30 | QIN S Q, WANG Y Y, MA P Exponential laws of critical displacement evolution for landslides and avalanches. Chinese Journal of Rock Mechanics and Engineering, 2010, 29 (5): 873- 880. | 
| 31 |  
											CROSETTO M, MONSERRAT O, LUZI G, et al Discontinuous GBSAR deformation monitoring. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93, 136- 141. 
																							 doi: 10.1016/j.isprsjprs.2014.04.002  | 
										
| 32 |  
											YIGIT E, DEMIRCI S, OZDEMIR C, et al Short-range ground-based synthetic aperture radar imaging: performance comparison between frequency-wavenumber migration and back-projection algorithms. Journal of Applied Remote Sensing, 2013, 7 (1): 073483. 
																							 doi: 10.1117/1.JRS.7.073483  | 
										
| 33 |  
											MONSERRAT O, CROSETTO M, LUZI G A review of ground-based SAR interferometry for deformation measurement. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93, 40- 48. 
																							 doi: 10.1016/j.isprsjprs.2014.04.001  | 
										
| 34 | PAN X D, XU Y M, XING C, et al Study of a GB-SAR rail error correction method based on an incident angle model. IEEE Trans. on Geoscience and Remote Sensing, 2019, 58 (1): 510- 518. | 
| 35 |  
											YANG H L, CAI J W, PENG J H A correcting method about GB-SAR rail displacement. International Journal of Remote Sensing, 2017, 38 (6): 1483- 1493. 
																							 doi: 10.1080/01431161.2017.1280631  | 
										
| 36 |  
											HU C, ZHU M, ZENG T, et al High-precision deformation monitoring algorithm for GBSAR system: rail determination phase error compensation. Science China Information Sciences, 2016, 59 (8): 082307. 
																							 doi: 10.1007/s11432-015-5446-z  | 
										
| 37 | CROSETTO M, MONSERRAT O, LUZI G, et al A noninterferometric procedure for deformation measurement using GB-SAR imagery. IEEE Geoscience and Remote Sensing Letters, 2013, 11 (1): 34- 38. | 
| 38 |  
											WANG Z, LI Z H, MILLS J Modelling of instrument repositioning errors in discontinuous multi-campaign ground-based SAR (MC-GBSAR) deformation monitoring. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 157, 26- 40. 
																							 doi: 10.1016/j.isprsjprs.2019.08.019  | 
										
| 39 | OLIVER C, QUEGAN S. Understanding synthetic aperture radar images. Raleigh: SciTech Publishing, 2004. | 
| 40 |  
											PIERACCINI M, MICCINESI L Ground-based radar interferometry: a bibliographic review. Remote Sensing, 2019, 11 (9): 1029. 
																							 doi: 10.3390/rs11091029  | 
										
| 41 |  
											TOFANI V, RASPINI F, CATANI F, et al Persistent scatterer interferometry (PSI) technique for landslide characterization and monitoring. Remote Sensing, 2013, 5 (3): 1045- 1065. 
																							 doi: 10.3390/rs5031045  | 
										
| 42 | ZHANG H. Research on DInSAR method based on coherent target. Beijing: Science Press, 2009. (in Chinese) | 
| 43 | WANG J F, PENG J H, YANG H L, et al InSAR phase unwrapping algorithm based on improved integral method. Science of Surveying and Mapping, 2016, 41 (12): 85- 88. | 
| 44 | LIU G X, CHEN Q, LUO X J, et al. Radar interference theory and method based on permanent scatterer. Beijing: Science Press, 2012. (in Chinese) | 
| 45 |  
											ZEBKER H A, LU Y Phase unwrapping algorithms for radar interferometry: residue-cut, least-squares, and synthesis algorithms. Journal of the Optical Society of America A, 1998, 15 (3): 586- 598. 
																							 doi: 10.1364/JOSAA.15.000586  | 
										
| 46 |  
											ZHA X J, SHAO Z G, DAI Z Y, et al Accurate frequency estimation for removal of orbital fringes in SAR interferograms. International Journal of Remote Sensing, 2020, 41 (14): 5305- 5320. 
																							 doi: 10.1080/01431161.2020.1731772  | 
										
| 47 | TIAN X, LIAO M S The analysis of conditions for InSAR in the fifield of deformation monitoring. Chinese Journal of Geophysics, 2013, 56 (3): 812- 823. | 
| 48 | GUO L P, YUE J P Analysis coherence effected by baseline and time interval. Bulletin of Surveying and Mapping, 2018, 7, 9- 12. | 
| 49 |  
											TOUZI R, LOPES A Coherence estimation for SAR imagery. IEEE Trans. on Geoscience and Remote Sensing, 1999, 37 (1): 135- 149. 
																							 doi: 10.1109/36.739146  | 
										
| 50 |  
											ZEBKER H A, VILLASENOR J Decorrelation in interferometric radar echoes. IEEE Trans. on Geoscience and Remote Sensing, 1992, 30 (5): 950- 959. 
																							 doi: 10.1109/36.175330  | 
										
| 51 | BIGGS J, WRIGHT T, LU Z, et al Multi-interferogram method for measuring interseismic deformation: Denali fault, Alaska. Geophysical Journal of the Royal Astronomical Society, 2010, 170 (3): 1165- 1179. | 
| 52 | LI Q Y, WANG N C. Numerical analysis. Beijing: Tsinghua University Press, 2008. | 
| 53 | XU Q, DONG X J, LI W L Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards. Geomatics and Information Science of Wuhan University, 2019, 44 (7): 957- 966. | 
| 54 |  
											HUANG Z S, SUN J P, LI Q, et al Time and space varying atmospheric phase correction in discontinuous ground-based synthetic aperture radar deformation monitoring. Sensors, 2018, 18 (11): 3883. 
																							 doi: 10.3390/s18113883  | 
										
| [1] | Zhu Zhengwei, & Zhou Jianjiang. Optimum selection of common master image for ground deformation monitoring based on PS-DInSAR technique [J]. Journal of Systems Engineering and Electronics, 2009, 20(6): 1213-1220. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||