1 |
XIA B, ZHOU L. Trajectory correction projectile and analysis on the key technologies for the trajectory correction process. National Defense Science & Technology, 2013, 34 (3): 27- 34.
|
2 |
ZHAO Y Q, LI J Q, LIU Y, et al. Review on development of trajectory correction fuze. Journal of Detection & Control, 2016, 38 (5): 1- 5, 21.
|
3 |
LEI X Y, ZHANG Z A. Research of impact point accuracy of one-dimensional trajectory correction projectile based on Monte Carlo. Journal of System Simulation, 2016, 28 (7): 1685- 1691, 1700.
|
4 |
ZHAO X F, WU G D, WANG Z J, et al. Optimized design of one-dimensional trajectory correction machine and simulation analysis. Journal of Ordnance Equipment Engineering, 2017, 38 (3): 42- 45.
|
5 |
WANG Z, CHANG S. Impact point prediction and lateral correction analysis of two-dimensional trajectory correction projectiles. Defense Technology, 2013, 9 (1): 48- 52.
doi: 10.1016/j.dt.2013.01.001
|
6 |
WANG Y, SONG W D, SONG X E, et al. Ballistic drift analysis of two-dimensional trajectory correction projectiles with fixed canards. Journal of Systems Engineering and Electronics, 2016, 38 (6): 1367- 1373.
|
7 |
WU Y F, ZHONG Y W, WANG L M. Study on angular motion characteristics of spin-stabilized 2D trajectory correction projectile under the effect of fixed canards. Acta Armamentarii, 2017, 38 (7): 1263- 1272.
|
8 |
COSTELLO M. Extended range of a gun launched smart projectile using controllable canards. Shock and Vibration, 2001, 8 (3-4): 203- 213.
doi: 10.1155/2001/615748
|
9 |
SEBESTYEN G, SINCLAIR R R, SMITH J A, et al. Canard control assembly for a projectile: US4512537. 1985.
|
10 |
LAN Z, JI Y, TIAN C, et al. Numerical study on rolling characteristics of canard-controlled missile with a free-spinning tail. Computer, Intelligent Computing and Education Technology, 2014.
|
11 |
ROGERS J, COSTELLO M. Design of a roll-stabilized mortar projectile with reciprocating canards. Journal of Guidance Control & Dynamics, 2015, 33 (4): 1026- 1034.
|
12 |
HANIN M, NEUMEIER Y. Roll divergence of a canardcontrolled missile with a freely spinning tail. Journal of Guidance Control & Dynamics, 2015, 9 (6): 633- 637.
|
13 |
GUPTA S K, SAXENA S, SINGHAL A, et al. Trajectory correction flight control system using pulsejet on an artillery rocket. Defense Science Journal, 2008, 58 (1): 15- 33.
doi: 10.14429/dsj.58.1621
|
14 |
PAVKOVIĆ B, PAVIĆ M, ĆUK D. Trajectory correction of artillery rockets using trajectory tracking with pulse frequency modulation. Proc. of the 4th International Scientific Conference on Defensive Technologies, 2011: 211-216.
|
15 |
GAO M, ZHANG Y, YANG S, et al. Trajectory correction capability modeling of the guided projectiles with impulse thrusters. Engineering Letters, 2016, 24 (1): 11- 18.
|
16 |
PAVIC M, PAVKOVIC B, MANDIC S, et al. Pulse-frequency modulated guidance laws for a mortar missile with a pulse jet control mechanism. Aeronautical Journal, 2015, 119 (1213): 389- 405.
doi: 10.1017/S0001924000010526
|
17 |
PAVKOVIC B, PAVIC M, CUK D. Frequency-modulated pulse-jet control of an artillery rocket. Journal of Spacecraft & Rockets, 2015, 49 (2): 286- 294.
|
18 |
ĆUK D, PAVIĆ M, PAVKOVIĆ B. Comparison of different guidance laws for a mortar missile with a pulse jet control mechanism. Proc. of the 4th International Scientific Conference on Defensive Technologies, 2011: 217-223.
|
19 |
JITPRAPHAI T, COSTELL M. Dispersion reduction of a direct fire rocket using lateral pulse jets. Journal of Spacecraft and Rockets, 2001, 38 (6): 929- 936.
doi: 10.2514/2.3765
|
20 |
AMITAY M, SMITH D, KIBENS V, et al. Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. American Institute of Aeronautics and Astronautics (AIAA) Journal, 2001, 39 (3): 361- 370.
doi: 10.2514/2.1323
|
21 |
GŁĘBOCKI R, JACEWICZ M, OŻÓG R. Some problems of aerodynamic and lateral-jet blended control for the surfaceto-air missile. Proc. of the Conference on Automation, 2018: 308-316.
|
22 |
ZHONG Y, YAO X X, ZHANG D X. Research on a test method of dynamic force of jet elements. Applied Mechanics and Materials, 2014, 574, 154- 159.
doi: 10.4028/www.scientific.net/AMM.574.154
|
23 |
MALEJKO G, BURKE P J, DOHRN R, et al. Jet interaction effect on the precision guided mortar munition (PGMM). Proc. of the Army Science Conference (ASC), 2008: 1-6.
|
24 |
HAN Z P. Exterior ballistic of projectiles and rockets. Beijing: Beijing Institute of Technology Press, 2014.
|
25 |
YANG Y, FAN X, ZHUO Z, et al. Improved particle swarm optimization based on particles' explorative capability enhancement. Journal of Systems Engineering and Electronics, 2016, 27 (4): 900- 911.
doi: 10.21629/JSEE.2016.04.19
|
26 |
CHENG Z L, FAN L, ZHANG Y L, et al. Multi-agent decision support system for missile defense based on improved PSO algorithm. Journal of Systems Engineering and Electronics, 2017, 28 (3): 514- 525.
doi: 10.21629/JSEE.2017.03.11
|
27 |
DU K L, SWAMY M N S. Search and optimization by metaheuristics:particle swarm optimization. Washington, DC:Springer International Publishing, 2016, 153- 173.
|
28 |
HANIFF M F, SELAMAT H, BUYAMIN S. An improved global particle swarm optimization for faster optimization process. Jurnal Teknologi, 2015, 72 (2): 63- 66.
|
29 |
FALLIS A G. Introduction to genetic algorithms. Journal of Chemical Information and Modeling, 2013, 53 (9): 1689- 1699.
|
30 |
KONAK A, COIT D W, SMITH A E. Multi-objective optimization using genetic algorithms:a tutorial. Reliability Engineering & System Safety, 2006, 91 (9): 992- 1007.
|
31 |
ZHAO L, LI Y L, LIU Y, et al. Optimization method research of satellite attaching track planning based on genetic algorithm. Systems Engineering and Electronics, 2016, 38 (5): 1114- 1120.
|
32 |
EARL D J, DEEM M W. Monte Carlo simulations. Evolution of Thin Film Morphology, Material Science. New York: Springer, 2008: 25-36.
|
33 |
BINDER K. Applications of Monte Carlo methods to statistical physics. Reports on Progress in Physics, 1997, 60 (5): 487- 559.
doi: 10.1088/0034-4885/60/5/001
|
34 |
METROPOLIS N, ULAM S. The Monte Carlo method. Astrophysics & Space Science, 1949, 44 (247): 335- 341.
|
35 |
SEILA A. Simulation and the Monte Carlo method. Technometrics, 2017, 24 (2): 167- 168.
|