| 1 | XIA B,   ZHOU L.   Trajectory correction projectile and analysis on the key technologies for the trajectory correction process. National Defense Science & Technology, 2013, 34 (3): 27- 34. | 
																													
																						| 2 | ZHAO Y Q,   LI J Q,   LIU Y,  et al.  Review on development of trajectory correction fuze. Journal of Detection & Control, 2016, 38 (5): 1- 5, 21. | 
																													
																						| 3 | LEI X Y,   ZHANG Z A.   Research of impact point accuracy of one-dimensional trajectory correction projectile based on Monte Carlo. Journal of System Simulation, 2016, 28 (7): 1685- 1691, 1700. | 
																													
																						| 4 | ZHAO X F,   WU G D,   WANG Z J,  et al.  Optimized design of one-dimensional trajectory correction machine and simulation analysis. Journal of Ordnance Equipment Engineering, 2017, 38 (3): 42- 45. | 
																													
																						| 5 | WANG Z,   CHANG S.   Impact point prediction and lateral correction analysis of two-dimensional trajectory correction projectiles. Defense Technology, 2013, 9 (1): 48- 52. doi: 10.1016/j.dt.2013.01.001
 | 
																													
																						| 6 | WANG Y,   SONG W D,   SONG X E,  et al.  Ballistic drift analysis of two-dimensional trajectory correction projectiles with fixed canards. Journal of Systems Engineering and Electronics, 2016, 38 (6): 1367- 1373. | 
																													
																						| 7 | WU Y F,   ZHONG Y W,   WANG L M.   Study on angular motion characteristics of spin-stabilized 2D trajectory correction projectile under the effect of fixed canards. Acta Armamentarii, 2017, 38 (7): 1263- 1272. | 
																													
																						| 8 | COSTELLO M.   Extended range of a gun launched smart projectile using controllable canards. Shock and Vibration, 2001, 8 (3-4): 203- 213. doi: 10.1155/2001/615748
 | 
																													
																						| 9 | SEBESTYEN G, SINCLAIR R R, SMITH J A, et al. Canard control assembly for a projectile: US4512537. 1985. | 
																													
																						| 10 | LAN Z,   JI Y,   TIAN C,  et al.  Numerical study on rolling characteristics of canard-controlled missile with a free-spinning tail. Computer, Intelligent Computing and Education Technology, 2014. | 
																													
																						| 11 | ROGERS J,   COSTELLO M.   Design of a roll-stabilized mortar projectile with reciprocating canards. Journal of Guidance Control & Dynamics, 2015, 33 (4): 1026- 1034. | 
																													
																						| 12 | HANIN M,   NEUMEIER Y.   Roll divergence of a canardcontrolled missile with a freely spinning tail. Journal of Guidance Control & Dynamics, 2015, 9 (6): 633- 637. | 
																													
																						| 13 | GUPTA S K,   SAXENA S,   SINGHAL A,  et al.  Trajectory correction flight control system using pulsejet on an artillery rocket. Defense Science Journal, 2008, 58 (1): 15- 33. doi: 10.14429/dsj.58.1621
 | 
																													
																						| 14 | PAVKOVIĆ B, PAVIĆ M, ĆUK D. Trajectory correction of artillery rockets using trajectory tracking with pulse frequency modulation. Proc. of the 4th International Scientific Conference on Defensive Technologies, 2011: 211-216. | 
																													
																						| 15 | GAO M,   ZHANG Y,   YANG S,  et al.  Trajectory correction capability modeling of the guided projectiles with impulse thrusters. Engineering Letters, 2016, 24 (1): 11- 18. | 
																													
																						| 16 | PAVIC M,   PAVKOVIC B,   MANDIC S,  et al.  Pulse-frequency modulated guidance laws for a mortar missile with a pulse jet control mechanism. Aeronautical Journal, 2015, 119 (1213): 389- 405. doi: 10.1017/S0001924000010526
 | 
																													
																						| 17 | PAVKOVIC B,   PAVIC M,   CUK D.   Frequency-modulated pulse-jet control of an artillery rocket. Journal of Spacecraft & Rockets, 2015, 49 (2): 286- 294. | 
																													
																						| 18 | ĆUK D, PAVIĆ M, PAVKOVIĆ B. Comparison of different guidance laws for a mortar missile with a pulse jet control mechanism. Proc. of the 4th International Scientific Conference on Defensive Technologies, 2011: 217-223. | 
																													
																						| 19 | JITPRAPHAI T,   COSTELL M.   Dispersion reduction of a direct fire rocket using lateral pulse jets. Journal of Spacecraft and Rockets, 2001, 38 (6): 929- 936. doi: 10.2514/2.3765
 | 
																													
																						| 20 | AMITAY M,   SMITH D,   KIBENS V,  et al.  Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. American Institute of Aeronautics and Astronautics (AIAA) Journal, 2001, 39 (3): 361- 370. doi: 10.2514/2.1323
 | 
																													
																						| 21 | GŁĘBOCKI R, JACEWICZ M, OŻÓG R. Some problems of aerodynamic and lateral-jet blended control for the surfaceto-air missile. Proc. of the Conference on Automation, 2018: 308-316. | 
																													
																						| 22 | ZHONG Y,   YAO X X,   ZHANG D X.   Research on a test method of dynamic force of jet elements. Applied Mechanics and Materials, 2014, 574, 154- 159. doi: 10.4028/www.scientific.net/AMM.574.154
 | 
																													
																						| 23 | MALEJKO G, BURKE P J, DOHRN R, et al. Jet interaction effect on the precision guided mortar munition (PGMM). Proc. of the Army Science Conference (ASC), 2008: 1-6. | 
																													
																						| 24 | HAN Z P.   Exterior ballistic of projectiles and rockets. Beijing: Beijing Institute of Technology Press, 2014. | 
																													
																						| 25 | YANG Y,   FAN X,   ZHUO Z,  et al.  Improved particle swarm optimization based on particles' explorative capability enhancement. Journal of Systems Engineering and Electronics, 2016, 27 (4): 900- 911. doi: 10.21629/JSEE.2016.04.19
 | 
																													
																						| 26 | CHENG Z L,   FAN L,   ZHANG Y L,  et al.  Multi-agent decision support system for missile defense based on improved PSO algorithm. Journal of Systems Engineering and Electronics, 2017, 28 (3): 514- 525. doi: 10.21629/JSEE.2017.03.11
 | 
																													
																						| 27 | DU K L,   SWAMY M N S.   Search and optimization by metaheuristics:particle swarm optimization. Washington, DC:Springer International Publishing, 2016, 153- 173. | 
																													
																						| 28 | HANIFF M F,   SELAMAT H,   BUYAMIN S.   An improved global particle swarm optimization for faster optimization process. Jurnal Teknologi, 2015, 72 (2): 63- 66. | 
																													
																						| 29 | FALLIS A G.   Introduction to genetic algorithms. Journal of Chemical Information and Modeling, 2013, 53 (9): 1689- 1699. | 
																													
																						| 30 | KONAK A,   COIT D W,   SMITH A E.   Multi-objective optimization using genetic algorithms:a tutorial. Reliability Engineering & System Safety, 2006, 91 (9): 992- 1007. | 
																													
																						| 31 | ZHAO L,   LI Y L,   LIU Y,  et al.  Optimization method research of satellite attaching track planning based on genetic algorithm. Systems Engineering and Electronics, 2016, 38 (5): 1114- 1120. | 
																													
																						| 32 | EARL D J, DEEM M W. Monte Carlo simulations. Evolution of Thin Film Morphology, Material Science. New York: Springer, 2008: 25-36. | 
																													
																						| 33 | BINDER K.   Applications of Monte Carlo methods to statistical physics. Reports on Progress in Physics, 1997, 60 (5): 487- 559. doi: 10.1088/0034-4885/60/5/001
 | 
																													
																						| 34 | METROPOLIS N,   ULAM S.   The Monte Carlo method. Astrophysics & Space Science, 1949, 44 (247): 335- 341. | 
																													
																						| 35 | SEILA A.   Simulation and the Monte Carlo method. Technometrics, 2017, 24 (2): 167- 168. |