Journal of Systems Engineering and Electronics ›› 2018, Vol. 29 ›› Issue (3): 625-638.doi: 10.21629/JSEE.2018.03.20
• Software Algorithm and Simulation • Previous Articles Next Articles
Ye DENG1(), Wanhong ZHU1,*(), Hongwei LI1(), Yonghui ZHENG2()
Received:
2017-01-03
Online:
2018-06-28
Published:
2018-07-02
Contact:
Wanhong ZHU
E-mail:dengye32@163.com;zhuwh_njgy@sina.com;13913828080@139.com;zyh_sr71@163.com
About author:
DENG Ye was born in 1989. He is a Ph.D. candidate in College of Field Engineering, Army Engineering University of PLA. His research interests include logistics modeling, optimization and algorithm. E-mail: Ye DENG, Wanhong ZHU, Hongwei LI, Yonghui ZHENG. Multi-type ant system algorithm for the time dependent vehicle routing problem with time windows[J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 625-638.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Comparing the results of different strategies for feasible solutions construction"
Instance | ACS-VEI | MMAS-VEI | MMAS-VEI + adaptive strategy | |||||
MNV | NGap | MNV | NGap | MNV | NGap | |||
R101 | 19 | 0.4 | 20 | 0.0 | 19 | 0.8 | ||
R108 | 10 | 0.7 | 10 | 0.9 | 10 | 0.8 | ||
C101 | 10 | 0.0 | 10 | 0.0 | 10 | 0.0 | ||
C104 | 10 | 0.0 | 10 | 0.0 | 10 | 0.0 | ||
RC104 | 10 | 0.7 | 11 | 0.5 | 11 | 0.2 | ||
RC106 | 12 | 0.2 | 12 | 0.3 | 12 | 0.4 | ||
Total | 70 | 2.0 | 73 | 1.7 | 72 | 2.2 |
Table 2
Comparing the results of different strategies for candidate solutions optimization"
Instance | ACS-TIME | MMAS-TIME | MMAS-TIME + adaptive strategy | |||||
BTD/NV | Gap/% | BTD/NV | Gap/% | BTD/NV | Gap/% | |||
R101 | 1 668.74/20 | 0.40 | 1 657.45/20 | 0.41 | 1 657.45/20 | 0.14 | ||
R108 | 978.64/11 | 0.32 | 974.90/11 | 0.40 | 972.04/11 | 0.08 | ||
C101 | 824.94/10 | 0.00 | 824.94/10 | 0.00 | 824.94/10 | 0.00 | ||
C104 | 905.36/10 | 0.21 | 903.99/10 | 0.08 | 899.48/10 | 0.13 | ||
RC104 | 1 190.13/11 | 0.52 | 1 171.46/11 | 0.11 | 1 151.80/11 | 0.50 | ||
RC106 | 1 420.24/13 | 0.25 | 1 420.71/13 | 0.30 | 1 386.99/13 | 1.29 | ||
Average | 1 164.68/12.5 | 0.31 | 1 158.91/12.5 | 0.24 | 1 148.78/12.5 | 0.41 |
Table 3
Comparison of the results in travel speed model TD1"
Class | MTAS | IRCI by Figliozzi (2012) | |||||||
ANV | ATT | ATD | AV | ANV | ATT | ATD | AV | ||
R1 | 11.67 | 1 071* | 1 297* | 1.21 | 11.67 | 1 080 | 1 295 | 1.20 | |
R2 | 2.73* | 1 022 | 1 275 | 1.25 | 2.82 | 990 | 1 216 | 1.23 | |
C1 | 10.00 | 686* | 828* | 1.21 | 10.00 | 729 | 879 | 1.21 | |
C2 | 3.00 | 502* | 590* | 1.18 | 3.00 | 563 | 657 | 1.17 | |
RC1 | 11.25* | 1 185 | 1 468 | 1.24 | 11.38 | 1 164 | 1 405 | 1.21 | |
RC2 | 3.25 | 1 166* | 1 455 | 1.25 | 3.25 | 1 177 | 1 444 | 1.23 |
Table 4
Comparison of the results in travel speed model TD2"
Class | MTAS | IRCI by Figliozzi (2012) | |||||||
ANV | ATT | ATD | AV | ANV | ATT | ATD | AV | ||
R1 | 10.67* | 918 | 1 352 | 1.47 | 10.75 | 897 | 1 258 | 1.40 | |
R2 | 2.45* | 887 | 1 332 | 1.50 | 2.55 | 861 | 1 244 | 1.44 | |
C1 | 10.00 | 616* | 828* | 1.34 | 10.00 | 644 | 864 | 1.34 | |
C2 | 3.00 | 441* | 590* | 1.34 | 3.00 | 495 | 654 | 1.32 | |
RC1 | 10.38* | 992 | 1 462 | 1.47 | 10.50 | 989 | 1 395 | 1.41 | |
RC2 | 2.75* | 1 013 | 1 502 | 1.48 | 2.88 | 993 | 1 454 | 1.46 |
Table 5
Comparison of the results in travel speed model TD3"
Class | MTAS | IRCI by Figliozzi (2012) | |||||||
ANV | ATT | ATD | AV | ANV | ATT | ATD | AV | ||
R1 | 9.92 | 785* | 1 323 | 1.68 | 9.92 | 793 | 1 237 | 1.56 | |
R2 | 2.27 | 768* | 1 324 | 1.72 | 2.27 | 774 | 1 269 | 1.64 | |
C1 | 10.00 | 570* | 828* | 1.45 | 10.00 | 608 | 880 | 1.45 | |
C2 | 3.00 | 405* | 590* | 1.46 | 3.00 | 485 | 697 | 1.44 | |
RC1 | 10.00 | 858* | 1 448 | 1.69 | 10.00 | 860 | 1 362 | 1.58 | |
RC2 | 2.75 | 865* | 1 464 | 1.69 | 2.75 | 867 | 1 434 | 1.65 |
Table 6
Comparing the minimal NV in the constant speed model (VRPTW) with the varying speed model (TDVRPTW) \linebreak for each instance"
Instance | VRPTW | TDVRPTW | ||
TD1 | TD2 | TD3 | ||
R101 | 19 | 18 | 16 | 14 |
R102 | 17 | 16 | 14 | 13 |
R103 | 13 | 13 | 12 | 10 |
R104 | 9 | 9 | 9 | 9 |
R105 | 14 | 13 | 12 | 11 |
R106 | 12 | 12 | 10 | 10 |
R107 | 10 | 10 | 9 | 9 |
R108 | 9 | 9 | 9 | 8 |
R109 | 11 | 11 | 10 | 9 |
R110 | 10 | 10 | 9 | 9 |
R111 | 10 | 10 | 9 | 9 |
R112 | 9 | 9 | 9 | 8 |
R201 | 4 | 4 | 3 | 3 |
R202 | 3 | 3 | 3 | 3 |
R203 | 3 | 3 | 3 | 2 |
R204 | 2 | 2 | 2 | 2 |
R205 | 3 | 3 | 3 | 3 |
R206 | 3 | 3 | 2 | 2 |
R207 | 2 | 2 | 2 | 2 |
R208 | 2 | 2 | 2 | 2 |
R209 | 3 | 3 | 3 | 2 |
R210 | 3 | 3 | 2 | 2 |
R2011 | 2 | 2 | 2 | 2 |
RC101 | 14 | 13 | 12 | 12 |
RC102 | 12 | 12 | 11 | 10 |
RC103 | 11 | 10 | 10 | 9 |
RC104 | 10 | 10 | 10 | 9 |
RC105 | 13 | 13 | 11 | 11 |
RC106 | 11 | 11 | 10 | 10 |
RC107 | 11 | 11 | 10 | 10 |
RC108 | 10 | 10 | 9 | 9 |
RC201 | 4 | 4 | 3 | 3 |
RC202 | 3 | 3 | 3 | 3 |
RC203 | 3 | 3 | 3 | 3 |
RC204 | 3 | 3 | 2 | 2 |
RC205 | 4 | 4 | 3 | 3 |
RC206 | 3 | 3 | 3 | 3 |
RC207 | 3 | 3 | 3 | 3 |
RC208 | 3 | 3 | 2 | 2 |
Total | 291 | 287 | 264 | 247 |
1 |
DANTZIG G B, RAMSER J H. The truck dispatching problem. Management Science, 1959, 6 (1): 80- 91.
doi: 10.1287/mnsc.6.1.80 |
2 |
CLARKE G, WRIGHT J W. Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 1964, 12 (4): 568- 581.
doi: 10.1287/opre.12.4.568 |
3 | AVCI M, TOPALOGLU S. An adaptive local search algorithm for vehicle routing problem with simultaneous and mixed pickups and deliveries. Computers & Industrial Engineering, 2015, 83, 15- 29. |
4 | ZHANG T, CHAOVALITWONGSE W A, ZHANG Y. Integrated ant colony and tabu search approach for time dependent vehicle routing problems with simultaneous pickup and delivery. Journal of Combinatorial Optimization, 2014, 28 (1): 288- 309. |
5 |
BELLOSO J, JUAN A A, MARTINEZ E, et al. A biasedrandomized metaheuristic for the vehicle routing problem with clustered and mixed backhauls. Networks, 2017, 69 (3): 241- 255.
doi: 10.1002/net.21734 |
6 | LUO Z, QIN H, CHE C H, et al. On service consistency in multi-period vehicle routing. European Journal of Operational Research, 2015, 243 (3): 731- 744. |
7 |
CHENG C, QI M, WANG X, et al. Multi-period inventory routing problem under carbon emission regulations. International Journal of Production Economics, 2016, 182, 263- 275.
doi: 10.1016/j.ijpe.2016.09.001 |
8 | GENDREAU M, GHIANI G, GUERRIERO E. Timedependent routing problems: a review. Computers & Operations Research, 2015, 64 (1): 189- 197. |
9 |
MALANDRAKI C, DASKIN M S. Time dependent vehicle routing problems: formulations, properties and heuristic algorithms. Transportation Science, 1992, 26 (3): 185- 200.
doi: 10.1287/trsc.26.3.185 |
10 | ICHOUA S, GENDREAU M, POTVIN J Y. Vehicle dispatching with time-dependent travel times. European Journal of Operational Research, 2003, 144 (2): 379- 396. |
11 |
AHN B H, SHIN J Y. Vehicle-routeing with time windows and time-varying congestion. Journal of the Operational Research Society, 1991, 42 (5): 393- 400.
doi: 10.1057/jors.1991.81 |
12 |
FLEISCHMANN B, GIETZ M, GNUTZMANN S. Timevarying travel times in vehicle routing. Transportation Science, 2004, 38 (2): 160- 173.
doi: 10.1287/trsc.1030.0062 |
13 | ALBIACH J, SANCHIS J, SOLER D. An asymmetric TSP with time windows and with time-dependent travel times and costs: an exact solution through a graph transformation. European Journal of Operational Research, 2008, 189 (3): 789- 802. |
14 |
OSVALD A, STIRN L Z. A vehicle routing algorithm for the distribution of fresh vegetables and similar perishable food. Journal of Food Engineering, 2008, 85 (2): 285- 295.
doi: 10.1016/j.jfoodeng.2007.07.008 |
15 | KUO Y. Using simulated annealing to minimize fuel consumption for the time-dependent vehicle routing problem. Computers & Industrial Engineering, 2010, 59 (1): 157- 165. |
16 | BALSEIRO S R, LOISEAU I, RAMONET J. An ant colony algorithm hybridized with insertion heuristics for the time dependent vehicle routing problem with time windows. Computers & Operations Research, 2011, 38 (6): 954- 966. |
17 |
HASHIMOTO H, YAGIURA M, IBARAKI T. An iterated local search algorithm for the time-dependent vehicle routing problem with time windows. Discrete Optimization, 2008, 5 (2): 434- 456.
doi: 10.1016/j.disopt.2007.05.004 |
18 |
FIGLIOZZI M A. The time dependent vehicle routing problem with time windows: benchmark problems, an efficient solution algorithm, and solution characteristics. Transportation Research Part E: Logistics and Transportation Review, 2012, 48 (3): 616- 636.
doi: 10.1016/j.tre.2011.11.006 |
19 | KOK A L, HANS E, SCHUTTEN J. Vehicle routing under time-dependent travel times: the impact of congestion avoidance. Computers & Operations Research, 2012, 39 (5): 910- 918. |
20 | MINOCHA B, TRIPATHI S. Two phase algorithm for solving VRPTW problem. International Journal of Artificial Intelligence and Expert Systems, 2013, 4 (1): 1- 16. |
21 | BEHROUZ A N, ALIREZA A N. A constructive heuristic for time-dependent multi-depot vehicle routing problem with time-windows and heterogeneous fleet. Journal of King Saud University-Engineering Sciences, 2014, 29 (1): 29- 34. |
22 |
SETAK M, HABIBI M, KARIMI H, et al. A time-dependent vehicle routing problem in multigraph with FIFO property. Journal of Manufacturing Systems, 2015, 35, 37- 45.
doi: 10.1016/j.jmsy.2014.11.016 |
23 |
LECLUYSE C, VAN WOENSEL T, PEREMANS H. Vehicle routing with stochastic time-dependent travel times. 4OR, 2009, 7 (4): 363- 377.
doi: 10.1007/s10288-009-0097-9 |
24 | DUAN Z, SUN S, SUN S, et al. Stochastic time-dependent vehicle routing problem: mathematical models and ant colony algorithm. Advances in Mechanical Engineering, 2015, 7 (11): 1- 16. |
25 | WEN L, EGLESE R. Minimum cost VRP with timedependent speed data and congestion charge. Computers & Operations Research, 2015, 56, 41- 50. |
26 | DORIGO M, MANIEZZO V, COLORNI A. Ant system: optimization by a colony of cooperating agents. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 1996, 26(1): 29-41. |
27 | GAMBARDELLA L M, DORIGO M. Ant-Q: a reinforcement learning approach to the traveling salesman problem. Proc. of the 12th International Conference on Machine Learning, 1995: 252-260. |
28 | DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. on Evolutionary Computation, 1997, 1(1): 53-66. |
29 |
STÜTZLE T, HOOS H H. MAX-MIN ant system. Future Generation Computer Systems, 2000, 16 (8): 889- 914.
doi: 10.1016/S0167-739X(00)00043-1 |
30 | BULLNHEIMER B, HARTL R F, STRAUSS C. A new rank based version of the ant system-a computational study. Central European Journal of Operations Research, 1997, 7 (1): 25- 38. |
31 | BLUM C, DORIGO M. The hyper-cube framework for ant colony optimization. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(2): 1161-1172. |
32 | GAMBARDELLA L M, TAILLARD E, AGAZZI G, et al. MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows. Proc. of the New Ideas in Optimization, 1999: 63-76. |
33 | DONATI A V, GAMBARDELLA L M, CASAGRANDE N, et al. Time dependent vehicle routing problem with an ant colony system. IDSIA Report, 2003, 185 (3): 1174- 1191. |
34 | DONATI A V, MONTEMANNI R, CASAGRANDE N, et al. Time dependent vehicle routing problem with a multi ant colony system. European Journal of Operational Research, 2008, 185 (3): 1174- 1191. |
35 | DONATI A V, MONTEMANNI R, GAMBARDELLA L M, et al. Integration of a robust shortest path algorithm with a time dependent vehicle routing model and applications. Computational Intelligence for Measurement Systems & Applications, 2003, 48 (5): 26- 31. |
36 | KUMAR S N, PANNEERSELVAM R. A comparative study of proposed genetic algorithm-based solution with other algorithms for time-dependent vehicle routing problem with time windows for e-commerce supply chain. Journal of Service Science & Management, 2015, 8 (6): 844- 859. |
37 | HUART V, PERRON S, CAPOROSSI G, et al. A Heuristic for the time-dependent vehicle routing problem with time windows. Cham, Switzerland: Springer International Publishing, 2016. |
38 |
SOLOMON M M. Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research, 1987, 35 (2): 254- 265.
doi: 10.1287/opre.35.2.254 |
39 | POTVIN J Y, ROUSSEAU J M. A parallel route building algorithm for the vehicle routing and scheduling problem with time windows. European Journal of Operational Research, 1993, 66 (3): 331- 340. |
40 |
ATKINSON J B. A greedy look-ahead heuristic for combinatorial optimization: an application to vehicle scheduling with time windows. Journal of the Operational Research Society, 1994, 45 (6): 673- 684.
doi: 10.1057/jors.1994.105 |
41 |
IOANNOU G, KRITIKOS M, PRASTACOS G. A greedy look-ahead heuristic for the vehicle routing problem with time windows. Journal of the Operational Research Society, 2001, 52 (5): 523- 537.
doi: 10.1057/palgrave.jors.2601113 |
42 | LAU H C, SIM M, TEO K M. Vehicle routing problem with time windows and a limited number of vehicles. European Journal of Operational Research, 2003, 148 (3): 559- 569. |
43 |
LIM A, ZHANG X. A two-stage heuristic with ejection pools and generalized ejection chains for the vehicle routing problem with time windows. Informs Journal on Computing, 2007, 19 (3): 443- 457.
doi: 10.1287/ijoc.1060.0186 |
44 |
LIN S. Computer solutions of the traveling salesman problem. Bell System Technical Journal, 1965, 44 (10): 2245- 2269.
doi: 10.1002/j.1538-7305.1965.tb04146.x |
45 |
FOSIN J, CARIC T, IVANJKO E. Vehicle routing optimization using multiple local search improvements. Automatika, 2014, 55 (2): 124- 132.
doi: 10.7305/automatika.2014.01.580 |
46 | ILHAN O R. Traveling salesman-type combinatorial problems and their relation to the logistics of regional blood banking. Evanston, United States: Northwestern University, 1976. |
47 |
OSMAN I H. Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Annals of Operations Research, 1993, 41 (4): 421- 451.
doi: 10.1007/BF02023004 |
48 |
TAILLARD E, BADEAU P, GENDREAU M, et al. A tabu search heuristic for the vehicle routing problem with soft time windows. Transportation Science, 1997, 31 (2): 170- 186.
doi: 10.1287/trsc.31.2.170 |
49 |
DOHN A, RASMUSSEN M S, LARSEN J. The vehicle routing problem with time windows and temporal dependencies. Networks, 2011, 58 (4): 273- 289.
doi: 10.1002/net.20472 |
50 | GENDREAU M, HERTZ A, LAPORTE G. New insertion and postoptimization procedures for the traveling salesman problem. Operations Research, 1991, 40 (6): 1086- 1094. |
51 | DESROCHERS M, LENSTRA J K, SAVELSBERGH M W P, et al. Vehicle routing with time windows: optimization and approximation. Proc. of the Vehicle Routing: Methods & Studies, 1987: 65-84. |
52 | GAMBARDELLA L M, TAILLARD E, AGAZZI G. MACSVRPTW: a multiple ant colony system for vehicle routing problems with time windows, IDSIA-06-99. Lugano, Switzerland: Technical Report Idsia, 1999. |
53 | STÜTZLE T, HOOS H H. Improving the ant system: a detailed report on the MAX-MIN ant system. FG Intellektik, FB Informatik, TU Darmstadt, 1996, 12 (1): 1- 22. |
54 | HOMBERGER J, GEHRING H. Two evolutionary metaheuristics for the vehicle routing problem with time windows. Information, 1999, 37 (3): 297- 318. |
55 | STÜTZLE T. Local search algorithms for combinatorial problems: analysis, improvements and new applications. Donauworth: STM Publishing House, 1999. |
56 | STUTZLE T, HOOS H. Improvements on the ant-system: introducing the MAX-MIN ant system. Proc. of the Artificial Neural Nets and Genetic Algorithms, 1998: 245-249. |
57 |
BENT R, VAN HENTENRYCK P. A two-stage hybrid local search for the vehicle routing problem with time windows. Transportation Science, 2004, 38 (4): 515- 530.
doi: 10.1287/trsc.1030.0049 |
58 |
LIM A, ZHANG X. A two-stage heuristic with ejection pools and generalized ejection chains for the vehicle routing problem with time windows. INFORMS Journal on Computing, 2007, 19 (3): 443- 457.
doi: 10.1287/ijoc.1060.0186 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||