Journal of Systems Engineering and Electronics ›› 2018, Vol. 29 ›› Issue (3): 658666.doi: 10.21629/JSEE.2018.03.23
• Reliability • Previous Articles
Guijie LI(), Chaoyang XIE(), Fayuan WEI*(), Fengjun WANG()
Received:
20170110
Online:
20180628
Published:
20180702
Contact:
Fayuan WEI
Email:411liguij@caep.cn;xiezy@caep.cn;weify@caep.cn;wangfj@caep.cn
About author:
LI Guijie was born in 1983. He is currently an engineer in Institute of System Engineering, China Academy of Engineering Physics. He received his B.S. degree, M.S. degree and Ph.D. degree in aircraft design from School of Aeronautics, Northwestern Polytechnical University, China, in 2006, 2010 and 2015, respectively. He has authored over 20 papers in international journals and conferences. His research interests include structural reliability, uncertain analysis and importance measure. Email: Supported by:
Guijie LI, Chaoyang XIE, Fayuan WEI, Fengjun WANG. Momentindependence global sensitivity analysis for the system with fuzzy failure state and its Kriging method[J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 658666.
Table 1
Distribution parameters of the input random variables"
Random variable  Symbol  Mean  Standard deviation 
q/(N/m)  X_{1}  20 000  1 400 
l/m  X_{2}  12  0.6 
A_{S}/m^{2}  X_{3}  9.82×10^{?4}  9.82×10^{?5} 
A_{C}/m^{2}  X_{4}  0.04  0.004 
E_{S}/(N/m^{2})  X_{5}  2×10^{11}  1.2×10^{10} 
E_{C/}/(N/m^{2})  X_{6}  3×10^{10}  1.8×10^{9} 
Table 3
Distribution parameters of the input variables of the composite beam [28, 29]"
Symbol  Inputvariable  Mean  Standarddeviation  Distribution 
X_{1}  A/mm  100  1  Normal 
X_{2}  B/mm  200  1  Normal 
X_{3}  C/mm  80  1  Normal 
X_{4}  D/mm  20  1  Normal 
X_{5}  L_{1}/mm  200  1  Normal 
X_{6}  L_{2}/mm  400  1  Normal 
X_{7}  L_{3}/mm  600  1  Normal 
X_{8}  L_{4}/mm  800  1  Normal 
X_{9}  L_{5}/mm  1 000  1  Normal 
X_{10}  L_{6}/mm  1 200  1  Normal 
X_{11}  L/mm  1 400  2  Normal 
X_{12}  P_{1}/kN  15  1.5  Gumbel 
X_{13}  P_{2}/kN  15  1.5  Gumbel 
X_{14}  P_{3}/kN  15  1.5  Gumbel 
X_{15}  P_{4}/kN  15  1.5  Gumbel 
X_{16}  P_{5}/kN  15  1.5  Gumbel 
X_{17}  P_{6}/kN  15  1.5  Gumbel 
X_{18}  E_{a}/GPa  70  7  Normal 
X_{19}  E_{w}/GPa  8.75  0.875  Normal 
X_{20}  S/MPa  60  6  Gumbel 
Table 4
Results of the GSA indices for the composite beam"
η_{i}  Method  
MCS  KM  
η_{A}/10^{?4}  3.860  3.653 
η_{B}/10^{?4}  4.143  4.041 
η_{C}/10^{?4}  1.120  1.001 
η_{D}/10^{?4}  5.221  5.553 
η_{L}_{1}/10^{?5}  2.196  1.898 
η_{L}_{2}/10^{?5}  1.786  1.860 
η_{L}_{3}/10^{?5}  3.225  3.177 
η_{L}_{4}/10^{?5}  1.380  1.486 
η_{L}_{5}/10^{?5}  2.845  2.716 
η_{L}_{6}/10^{?5}  1.950  2.123 
η_{L}/10^{?4}  1.478  1.432 
η_{P}_{1}/10^{?3}  1.411  1.348 
η_{P}_{2}/10^{?3}  1.109  1.062 
η_{P}_{3}/10^{?3}  1.243  1.190 
η_{P}_{4}/10^{?4}  7.605  8.168 
η_{P}_{5}/10^{?4}  4.438  5.058 
η_{P}_{6}/10^{?5}  8.779  8.934 
η_{E}_{a}/10^{?4}  8.685  9.084 
η_{E}_{w}/10^{?4}  7.436  7.602 
η_{S}/10^{?3}  2.143  2.237 
1.929  2.043 
1 
CASTILLO E, MINGUEZ R, CASTILLO C. Sensitivity analysis in optimization and reliability problems. Reliability Engineering and System Safety, 2008, 93 (12): 1788 1800.
doi: 10.1016/j.ress.2008.03.010 
2 
DUI H Y, SI S B, CAI Z Q, et al. Importance measure of system reliability upgrade for multistate consecutive koutofn systems. Journal of Systems Engineering and Electronics, 2012, 23 (6): 936 942.
doi: 10.1109/JSEE.2012.00115 
3  LI G J, XIE C Y, WEI F Y. The momentindependence importance measure for fuzzy failure criterion and its Kriging solution. Proc. of Prognostics and System Health Management Conference, 2017: 16. 
4  WEI P F, LU Z Z, SONG J W. Variable importance analysis: a comprehensive review. Reliability Engineering and System Safety, 2015, 142 (1): 399 432. 
5 
LI L Y, LU Z Z, FENG J, et al. Momentindependent importance measure of basic variable and its state dependent parameter solution. Structural Safety, 2012, 38, 40 47.
doi: 10.1016/j.strusafe.2012.04.001 
6 
SALTELLI A, MARIVOET J. Nonparametric statistics in sensitivity analysis for model output: a comparison of selected techniques. Reliability Engineering and System Safety, 1990, 28 (2): 229 253.
doi: 10.1016/09518320(90)90065U 
7 
DOKSUM K, SAMAROV A. Nonparametric estimation of global functionals and a measure of the explanatory power of covariates in regression. Annals of Statistics, 1995, 23 (5): 1443 1473.
doi: 10.1214/aos/1176324307 
8 
IMAN R L, HORA S C. A robust measure of uncertainty importance for use in fault tree system analysis. Risk Analysis, 1990, 10 (3): 401 406.
doi: 10.1111/j.15396924.1990.tb00523.x 
9  SOBOL I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation, 2001, 55 (13): 271 280. 
10 
HELTON J C, DAVIS F J. Latin hypercube sampling and the propagation of uncertainty in analysis of complex systems. Reliability Engineering and System Safety, 2003, 81 (1): 23 69.
doi: 10.1016/S09518320(03)000589 
11  CHUN M H, HAN S J, TAK N I. An uncertainty importance measure using a distance metric for the change in a cumulative distribution function. Reliability Engineering and System Safety, 2007, 70 (3): 313 321. 
12 
LIU H B, CHEN W, SUDJIANTO A. Relative entropy based method for probabilistic sensitivity analysis in engineering design. Journal of Mechanical Design Transactions of the ASME, 2006, 128 (2): 326 336.
doi: 10.1115/1.2159025 
13 
BORGONOVO E. A new uncertainty importance measure. Reliability Engineering and System Safety, 2007, 92 (6): 771 784.
doi: 10.1016/j.ress.2006.04.015 
14 
BORGONOVO E, CASTAINGS W, TARANTOLA S. Moment independent importance measures: new results and analytical test cases. Risk Analysis, 2011, 31 (3): 404 428.
doi: 10.1111/j.15396924.2010.01519.x 
15  LU Z Z, YUE Z F, FENG Y S. Procedure for the computation of fuzzy random failure probability of wear. Mechanical Science and Technology, 1997, 16 (6): 1018 1023. 
16  ZADEH L A. Probability measures of fuzzy events. Journal of Mathematical Analysis & Applications, 1968, 23 (10): 421 427. 
17  ZADEH L A. The concept of a linguistic variable and its application to approximate reasoning. Information Sciences, 1975, 8 (3): 199 249. 
18 
CAI K Y, WEN C Y, ZHANG M L. Fuzzy variables as a basis for a theory of fuzzy reliability in the possibility context. Fuzzy Sets and Systems, 1991, 42 (2): 145 172.
doi: 10.1016/01650114(91)90143E 
19 
JIANG Q, CHEN C H. A numerical algorithm of fuzzy reliability. Reliability Engineering and System Safety, 2003, 80 (3): 299 307.
doi: 10.1016/S09518320(03)000553 
20 
HUANG H Z. Fuzzy reliability analysis of generalized strength of mechanical structure. Chinese Journal of Mechanical Engineering, 2001, 37 (6): 106 108.
doi: 10.3901/JME.2001.06.106 
21  DONG Y G. A study on fuzzy reliability design approach of machine parts while the random stress is in the form of fuzzy strength. Journal of Machine Design, 1999, 16 (3): 11 13. 
22  LI L Y, LU Z Z, CHENG L, el at. Importance analysis on the failure probability of the fuzzy and random system and its state dependent parameter solution. Fuzzy Sets and Systems, 2014, 250 (2): 69 89. 
23  LI G J, LU Z Z, LI L Y, et al. Aleatory and epistemic uncertainties analysis based on nonprobabilistic reliability and its Kriging solution. Applied Mathematical Modelling, 2016, 40 (9/10): 5703 5716. 
24 
BICHON B J, ELDRED M S, SWILER L P. Efficient global reliability analysis for nonlinear implicit performance functions. AIAA Journal, 2008, 46 (10): 2459 2468.
doi: 10.2514/1.34321 
25 
BICHON B J, MCFARLAND J M, MAHADEVAN S. Efficient surrogate models for reliability analysis of systems with multiple failure modes. Reliability Engineering and System Safety, 2011, 96 (10): 1386 1395.
doi: 10.1016/j.ress.2011.05.008 
26  ZHANG L G, LU Z Z, WANG P. Efficient structural reliability analysis method based on advanced Kriging model. Applied Mathematical Modelling, 2015, 39 (2): 781 793. 
27  ZHANG L G, LU Z Z, CHENG L. A new method for evaluating Borgonovo momentindependent importance measure with its application in an aircraft structure. Reliability Engineering and System Safety, 2014, 132 (8): 163 175. 
28 
DU X P, SUDJIANTO A. First order saddlepoint approximation for reliability analysis. AIAA Journal, 2004, 42 (6): 1199 1207.
doi: 10.2514/1.3877 
29 
LI L Y, LU Z Z, HU J X. A new kind of regional importance measure of the input variable and its state dependent parameter solution. Reliability Engineering and System Safety, 2014, 128, 1 16.
doi: 10.1016/j.ress.2014.03.008 
No related articles found! 
Viewed  
Full text 


Abstract 

