Journal of Systems Engineering and Electronics ›› 2018, Vol. 29 ›› Issue (4): 854-863.doi: 10.21629/JSEE.2018.04.20
• Software Algorithm and Simulation • Previous Articles Next Articles
Fan LI1,*(), Hongkui BI2(), Jiajun XIONG2(), Chenlong YU1(), Xuhui LAN2()
Received:
2017-03-30
Online:
2018-08-01
Published:
2018-08-30
Contact:
Fan LI
E-mail:1746338543@qq.com;bhk001@126.com;13871163420@139.com;342583844@qq.com;Lansoft007@sohu.com
About author:
LI Fan was born in 1992. He received his B.S degree and M.S degree from the Air Force Earlywarning College in 2010 and 2016, respectively. Now, he is a Ph.D. candidate and a lecturer in Department of Early Warning Intelligence at the Air Force Early-warning College. His research interest is the near space hypersonic vehicle early warning detection technology. E-mail: Supported by:
Fan LI, Hongkui BI, Jiajun XIONG, Chenlong YU, Xuhui LAN. A dual channel perturbation particle filter algorithm based on GPU acceleration[J]. Journal of Systems Engineering and Electronics, 2018, 29(4): 854-863.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Comparison of algorithm performance"
Number of particles | 1 000 | 500 | 100 | |
Parameter | Algorithm | |||
$X$_$_{\rm ORMSE}$ | SIR | 346.53 | 393.45 | — |
APF | 327.45 | 374.81 | — | |
SQP-PF | 309.21 | 352.26 | — | |
GPU-DC-PF | 263.64 | 321.63 | 357.21 | |
$Y$_$_{\rm ORMSE}$ | SIR | 351.64 | 402.33 | — |
APF | 336.10 | 389.02 | — | |
SQP-PF | 317.07 | 365.31 | — | |
GPU-DC-PF | 283.51 | 335.21 | 361.84 | |
$N_{e}$ | SIR | 189 | 84 | — |
APF | 257 | 112 | — | |
SQP-PF | 367 | 137 | — | |
GPU-DC-PF | 583 | 257 | 68 | |
$f$ | SIR | 39 | 69 | 100 |
APF | 23 | 54 | 100 | |
SQP-PF | 12 | 37 | 100 | |
GPU-DC-PF | 0 | 0 | 23 | |
$T_{c}$ | SIR | 50.814 | 27.364 | — |
APF | 58.312 | 29.507 | — | |
SQP-PF | 60.089 | 30.012 | — | |
GPU-DC-PF | 12.731 | 8.542 | 2.688 |
1 |
CAPPE O, GODSILL S J, MOULINES E. An overview of existing methods and recent advances in sequential Monte Carlo. Proceedings of the IEEE, 2007, 95 (5): 899- 924.
doi: 10.1109/JPROC.2007.893250 |
2 | DOUCET A, JOHANSEN A M. A tutorial on particle filtering and smoothing: 15 years later. Handbook of Nonlinear Filtering, 2011, 1- 39. |
3 |
GUSTAFSSON F. Particle filter theory and practice with positioning applications. IEEE Aerospace and Electronic Systems Magazine, 2010, 25 (7): 53- 81.
doi: 10.1109/MAES.2010.5546308 |
4 |
LI T C, BOLIC M, DJURIC P M. Resampling methods for particle filtering: classification, implementation, and strategies. IEEE Signal Processing Magazine, 2015, 32 (3): 70- 86.
doi: 10.1109/MSP.2014.2330626 |
5 |
LI T C, VILLARRUBIA G, SUN S D, et al. Resampling methods for particle filtering: identical distribution, a new method, and comparable study. Frontiers of Information Technology and Electronic Engineering, 2015, 16 (11): 969- 984.
doi: 10.1631/FITEE.1500199 |
6 |
LI T C, SUN S D, SATTAR T P, et al. Fight sample degeneracy and impoverishment in particle filters: a review of intelligent approaches. Expert Systems with Applications, 2014, 41 (8): 3944- 3954.
doi: 10.1016/j.eswa.2013.12.031 |
7 | LI X R, JILKOV V P. A survey of maneuvering target tracking, part VIc: approximate nonlinear density filtering in discrete time. Proc. of the SPIE Defense, Security, and Sensing, 2012: 1-12. |
8 | SARKKA S. On unscented Kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Trans. on Automatic Control, 2007, 52(9): 1631-1641. |
9 | BARRETT L, HENZI S P. Particle filters for positioning, navigation and tracking. IEEE Trans. on Signal Processing, 2002, 50(2): 425-437. |
10 | ARASARATNAM I, HAYKIN S. Cubature Kalman filters. IEEE Trans. on Automatic Control, 2009, 54(6): 1254-1269. |
11 | ZHANG W J, WANG S Y, FENG Y L, et al. Huber-based high-degree cubature Kalman tracking algorithm. Acta Physica Sinica, 2016, 65 (8): 088401. |
12 | XU C, GAO M, YANG Y. Self-turning hierarchical Kalmanparticle for efficient target tracking. Infrared and Laser Engineering, 2015, 44 (6): 1942- 1949. |
13 | ZUO J Y, JIA Y N. Particle filter guided by iterated extended Kalman filter. Proc. of the 13th Automation and Systems International Conference on Control, 2013: 1605-1609. |
14 | LIU C Y, SHUI P L, LI S. Unscented extended Kalman filter for target tracking. Journal of Systems Engineering and Electronics, 2011, 22 (2): 188- 192. |
15 | LI T C, SUN S D. Double-resampling based Monte Carlo localization for mobile robot. Acta Automatma Sinica, 2010, 36 (9): 1279- 1286. |
16 | LI T C, FAN H Q, SUN S D. Particle filtering: theory, approach, and application for multi-target tracking. Acta Automatma Sinica, 2015, 41 (12): 1981- 2002. |
17 | JILKOV V P, WU J D. Efficient GPU-accelerated implementation of particle and particle flow filters for target tracking. Journal of Advances in Information Fusion, 2015, 10 (1): 73- 88. |
18 | BROWN J A, CAPSON D W. A framework for 3D modelbased visual tracking using a GPU-accelerated particle filter. IEEE Trans. on Visualization & Computer Graphics, 2011, 18(1): 68-80. |
19 | BASHI A S, JILKOV V P, LI X R, et al. Distributed implementations of particle filters. Proc. of the International Conference on Information Fusion, 2003: 1164-1171. |
20 | DEL M P, DOUCET A. Particle methods: an introduction with applications. Esaim: Proceedings, 2014, 44, 1- 46. |
21 |
ZHANG Q, QIAO Y K, KONG X Y, et al. Study on stochastic perturbation strong tracking particle filter. Acta Physica Sinica, 2014, 63 (11): 110505.
doi: 10.3390/app7111152 |
22 | BOLIC M, DJURIC P M, HONG S. Resampling algorithms and architectures for distributed particle filters. IEEE Trans. on Signal Processing, 2005, 53(7): 2442-2450. |
23 | STEINBRING J, HANEBECK U D. GPU-accelerated progressive Gaussian filtering with applications to extended object tracking. Proc. of the IEEE International Conference on Information Fusion, 2015: 1038-1045. |
24 | TAGER S. GPU-specfic Kalman filtering and retrodiction for large-scale target tracking. Electrical & Computer Engineering, 2013, 1- 113. |
25 | HASHMI M F, PAL R, SAXENA R, et al. A new approach for real time object detection and tracking on high resolution and multi-camera surveillance videos using GPU. Journal of Central South University, 2016, 23 (1): 130- 144. |
26 | GOYAL B, BUDHRAJA T, BHATNAGAR R, et al. Implementation of particle filters for single target tracking using CUDA. Proc. of the 5th IEEE International Conference on Advances in Computing and Communications, 2016: 28-32. |
27 |
KIM S, CHO J, PARK D. Moving-target position estimation using GPU-based particle filter for IOT sensing applications. Applied Sciences, 2017, 7 (11): 1- 14.
doi: 10.3390/app7111152 |
28 |
LIU K, WEI S, CHEN Z, et al. A real-time high performance computation architecture for multiple moving target tracking based on wide-area motion imagery via cloud and graphic processing units. Sensors, 2017, 17 (2): 1- 16.
doi: 10.3390/s17020356 |
29 | TAN F, XIAO S, LI L. Enhanced CMT tracking algorithm with CUDA acceleration. Proc. of the IEEE International Conference on Multimedia & Expo Workshops, 2017: 441-446. |
30 | COOK S. CUDA programming: a developer's guide to parallel computing with GPUs. San Francisco: Morgan Kaufmann, 2012. |
31 |
ZOU W J, GONG X, BO Y M. Adaptive layered-sampling auxiliary particle filter's research and application in video tracking. Acta Photonica Sinica, 2010, 39 (3): 571- 576.
doi: 10.3788/gzxb20103903.0571 |
32 | LI F, BI H K, DUAN M, et al. Particle filter algorithm based on sequential quadratic programming. Modern Radar, 2016, 38 (9): 50- 56. |
[1] | Ting SU, Yong GAO. TDOA estimation of dual-satellites interference localization based on blind separation [J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 696-702. |
[2] | Wei Han, Ziyue Tang, and Zhenbo Zhu. Method of target tracking with Doppler blind zone constraint [J]. Journal of Systems Engineering and Electronics, 2013, 24(6): 889-898. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||