Journal of Systems Engineering and Electronics ›› 2018, Vol. 29 ›› Issue (6): 1317-1326.doi: 10.21629/JSEE.2018.06.19
• Reliability • Previous Articles Next Articles
Qiang QIN1,*(), Yunwen FENG2(), Feng LI1,3()
Received:
2018-01-19
Online:
2018-12-25
Published:
2018-12-26
Contact:
Qiang QIN
E-mail:johnnystyle@126.com;fengyunwen@nwpu.edu.cn;15210164875@163.com
About author:
QIN Qiang was born in 1986. He received his B.S. degree in safety engineering, M.S. degree and Ph.D. degree in aircraft design from Northwestern Polytechnical University in 2009, 2012 and 2016, respectively. He is now an engineer in Aerospace Science and Industry Corporation Defense Technology Research and Test Center. His research interests are meta-heuristic algorithms and structural reliability. He has published four research papers about the application of the cuckoo search algorithm. E-mail: Supported by:
Qiang QIN, Yunwen FENG, Feng LI. Structural reliability analysis using enhanced cuckoo search algorithm and artificial neural network[J]. Journal of Systems Engineering and Electronics, 2018, 29(6): 1317-1326.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Results of test case 1"
Algorithm | β | Pf ×10?4 | CUP time/s | error1/% | error2/% | |||
Best | Worst | Mean | Standard | |||||
GA | 3.360 53 | 3.610 80 | 3.407 20 | 0.0784 65 | 3.282 | 2.091 | 0.813 | 8.833 |
PSO | 3.360 59 | 3.739 12 | 3.476 82 | 0.1106 76 | 2.540 | 1.319 | 2.864 | 29.44 |
CS | 3.360 53 | 3.364 06 | 3.360 80 | 7.63E-03 | 3.886 | 1.485 | 0.568 | 8.056 |
WOA | 3.360 57 | 3.766 47 | 3.442 04 | 0.132 409 | 2.887 | 0.899 | 1.835 | 19.81 |
SCA | 3.368 82 | 3.812 99 | 3.636 64 | 0.146 909 | 1.381 | 0.922 | 7.593 | 61.64 |
SSA | 3.360 53 | 3.705 60 | 3.471 64 | 0.126 271 | 2.586 | 0.924 | 2.711 | 28.17 |
ECS | 3.360 53 | 3.361 01 | 3.360 91 | 8.81E-05 | 3.884 | 1.525 | 0.565 | 7.889 |
Table 2
Results of test case 2"
Algorithm | β | Pf | CUP time/s | error1/% | error2/% | |||
Best | Worst | Mean | Standard | |||||
GA | 3.123 69 | 4.633 08 | 3.597 65 | 0.324 72 | 1.61×10?4 | 2.242 | 19.92 | 88.07 |
PSO | 3.031 80 | 4.687 98 | 3.574 49 | 0.345 75 | 1.75×10?4 | 1.328 | 19.15 | 87.04 |
CS | 3.009 72 | 3.092 25 | 3.034 06 | 0.022 53 | 1.21×10?3 | 1.799 | 1.135 | 10.67 |
WOA | 3.028 44 | 5.836 12 | 4.130 06 | 0.537 30 | 1.81×10?5 | 1.266 | 37.67 | 98.66 |
SCA | 3.671 27 | 6.044 14 | 0.557 48 | 4.970 71 | 3.34×10?7 | 1.301 | 65.69 | 99.98 |
SSA | 3.246 75 | 5.802 25 | 4.253 09 | 0.675 74 | 1.05×10?5 | 1.336 | 41.77 | 99.22 |
ECS | 3.008 76 | 3.018 05 | 3.009 75 | 0.002 52 | 1.31×10?3 | 1.821 | 0.325 | 3.185 |
Table 3
Results of test case 3"
Algorithm | β | Pf×10?3 | CUP time/s | error1/% | error2/% | |||
Best | Worst | Mean | Standard | |||||
GA | 2.712 98 | 3.335 09 | 2.853 26 | 0.163 97 | 2.163 | 1.389 | 6.227 | 40.23 |
PSO | 2.710 13 | 3.141 63 | 2.832 99 | 0.121 81 | 2.305 | 0.621 | 5.472 | 36.31 |
CS | 2.712 90 | 3.131 47 | 2.851 21 | 0.117 81 | 2.177 | 0.682 | 6.151 | 39.84 |
WOA | 2.717 67 | 3.427 56 | 3.006 10 | 0.161 52 | 1.323 | 0.215 | 11.91 | 63.45 |
SCA | 3.116 08 | 32 767.2 | 1 645.66 | 5 928.02 | NA | 0.218 | NA | NA |
SSA | 2.709 94 | 3.082 30 | 2.905 09 | 0.127 47 | 1.835 | 0.251 | 8.157 | 49.29 |
ECS | 2.710 27 | 3.059 65 | 2.832 82 | 0.099 51 | 2.307 | 0.794 | 5.466 | 36.27 |
Table 4
Results of test case 4"
Algorithm | β | Pf×10?3 | CUP time/s | error1/% | error2/% | |||
Best | Worst | Mean | Standard | |||||
GA | 2.023 80 | 4.031 46 | 2.47012 | 0.51761 | 6.753×10 | 1.323 | 23.506 | 70.315 |
PSO | 2.000 00 | 3.736 83 | 2.245 32 | 0.415 84 | 1.237×10 | 0.621 | 12.266 | 45.609 |
CS | 2.000 02 | 2.228 83 | 2.025 06 | 0.059 23 | 2.143×10 | 0.652 | 1.2531 | 5.799 5 |
WOA | 2.000 18 | 3.759 90 | 2.420 99 | 0.502 09 | 7.739×10 | 0.220 | 21.049 | 65.982 |
SCA | 2.023 97 | 6.945 43 | 3.165 94 | 1.155 36 | 7.728×10 | 0.217 | 58.297 | 96.602 |
SSA | 2.000 05 | 3.993 36 | 2.436 57 | 0.524 51 | 7.413×10 | 0.250 | 21.828 | 67.412 |
ECS | 2.000 00 | 2.047 98 | 2.012 35 | 0.015 35 | 2.209×10 | 0.791 | 0.6175 | 2.894 4 |
Table 5
Results of test case 5"
Algorithm | β | Pf×10?3 | CUP time/s | error1/% | error2/% | |||
Best | Worst | Mean | Standard | |||||
GA | 2.500 65 | 3.115 52 | 2.696 49 | 0.200 57 | 3.503 | 1.388 | 8.292 | 45.08 |
PSO | 2.500 12 | 3.091 67 | 2.682 11 | 0.189 91 | 3.657 | 0.626 | 7.715 | 42.66 |
CS | 2.499 99 | 2.502 24 | 2.500 13 | 0.000 43 | 6.207 | 0.633 | 0.407 | 2.705 |
WOA | 2.501 11 | 3.183 43 | 2.752 91 | 0.260 85 | 2.953 | 0.235 | 10.56 | 53.71 |
SCA | 2.512 54 | 18.01 33 | 4.380 43 | 3.138 55 | 0.006 | 0.208 | 75.92 | 99.91 |
SSA | 2.500 03 | 3.170 48 | 2.714 77 | 0.221 61 | 3.316 | 0.235 | 9.026 | 48.02 |
ECS | 2.497 50 | 2.497 50 | 2.497 50 | 1.355E–15 | 6.253 | 0.785 | 0.301 | 1.981 |
Table 7
Results of test case 5"
Algorithm | β | Pf×10?4 | CUP time/s | error1/% | error2/% | |||
Best | Worst | Mean | Standard | |||||
GA | 3.214 57 | 3.259 64 | 3.223 16 | 0.406 74 | 6.339 | 3.215 | 0.755 | 8.060 |
PSO | 3.201 69 | 3.225 48 | 3.214 47 | 0.444 87 | 6.534 | 1.744 | 0.484 | 5.231 |
CS | 3.201 69 | 3.205 87 | 3.202 41 | 0.052 46 | 6.814 | 1.986 | 0.107 | 1.173 |
WOA | 3.201 78 | 5.937 26 | 4.239 59 | 0.845 93 | 11.196 | 1.340 | 41.32 | 99.17 |
SCA | 4.889 42 | 39 051.9 | 5 210.48 | 8.084 52 | NA | 1.372 | NA | NA |
SSA | 3.201 83 | 5.893 19 | 4.0268 6 | 0.767 34 | 28.262 | 1.412 | 25.773 | 95.90 |
ECS | 3.201 69 | 3.201 74 | 3.201 70 | 0.003 24 | 6.831 | 2.014 | 0.084 | 0.933 |
1 |
GUIMARÃES H, MATOS J C, HENRIQUES A A. An innovative adaptive sparse response surface method for structural reliability analysis. Structural Safety, 2018, 73, 12- 28.
doi: 10.1016/j.strusafe.2018.02.001 |
2 |
GROOTEMAN F. An adaptive directional importance sampling method for structural reliability. Probabilistic Engineering Mechanics, 2011, 26 (2): 134- 141.
doi: 10.1016/j.probengmech.2010.11.002 |
3 |
HADIDI A, AZAR B F, RAFIEE A. Efficient response surface method for high-dimensional structural reliability analysis. Structural Safety, 2017, 68, 15- 27.
doi: 10.1016/j.strusafe.2017.03.006 |
4 | ELEGBEDE C. Structural reliability assessment based on particles swarm optimization. Structural Safety, 2005, 27 (2): 171- 186. |
5 |
YI P, WEI K T, KONG X J. Cumulative PSO-Kriging model for slope reliability analysis. Probabilistic Engineering Mechanics, 2015, 39, 39- 45.
doi: 10.1016/j.probengmech.2014.12.001 |
6 | LUO X, LI X, ZHOU J, et al. A Kriging-based hybrid optimization algorithm for slope reliability analysis. Structural Safety, 2012, 34 (1): 401- 406. |
7 |
CHENG J, LI Q. Reliability analysis of structures using artificial neural network based genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 3742- 3750.
doi: 10.1016/j.cma.2008.02.026 |
8 |
CHENG J. An artificial neural network based genetic algorithm for estimating the reliability of long span suspension bridges. Finite Elements in Analysis and Design, 2010, 46, 658- 667.
doi: 10.1016/j.finel.2010.03.005 |
9 | DENG J, GU D, LI X, et al. Structural reliability analysis for implicit performance functions using artificial neural network. Structural Safety, 2005, 27 (1): 25- 48. |
10 |
ELHEWY A H, MESBAHI E, PU Y. Reliability analysis of structure using neural network method. Probabilistic Engineering Mechanics, 2006, 21 (1): 44- 53.
doi: 10.1016/j.probengmech.2005.07.002 |
11 |
KROETZ H M, TESSARI R K, BECK A T. Performance of global metamodeling techniques in solution of structural reliability problems. Advances in Engineering Software, 2017, 114, 394- 404.
doi: 10.1016/j.advengsoft.2017.08.001 |
12 |
ALBANESI A, ROMAN N, BRE F, et al. A metamodel-based optimization approach to reduce the weight of composite laminated wind turbine blades. Composite Structures, 2018, 194, 345- 356.
doi: 10.1016/j.compstruct.2018.04.015 |
13 |
XIAO N C, ZUO M J, ZHOU C N. A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis. Reliability Engineering and System Safety, 2018, 169, 330- 338.
doi: 10.1016/j.ress.2017.09.008 |
14 | YANG X S, DEB S. Cuckoo search via Lévy flights. Proc. of the World Congress on Nature & Biologically Inspired Computing, 2009: 210-214. |
15 |
YANG X S, DEB S. Engineering optimisation by cuckoo search. International Journal of Mathematical Modeling and Numerical Optimisation, 2010, 1 (4): 330- 343.
doi: 10.1504/IJMMNO.2010.035430 |
16 | KAVEH A, BAKHSHPOORI T. An efficient multi-objective cuckoo search algorithm for design optimization. Advances in Computational Design, 2016, 1 (1): 87- 103. |
17 | ABDEL-BASET M, HEZAM I. Cuckoo search and genetic algorithm hybrid schemes for optimization problems. Applied Mathematics, 2016, 10 (3): 1185- 1192. |
18 |
YANG B, MIAO J, FAN Z C, et al. Modified cuckoo search algorithm for the optimal placement of actuators problem. Applied Soft Computing, 2018, 67, 48- 60.
doi: 10.1016/j.asoc.2018.03.004 |
19 |
RAKHSHANI H, RAHATI A. Snap-drift cuckoo search: a novel cuckoo search optimization algorithm. Applied Soft Computing, 2017, 52, 771- 794.
doi: 10.1016/j.asoc.2016.09.048 |
20 |
DHABALA S, VENKATESWARANB P. An efficient gbestguided Cuckoo Search algorithm for higher order two channel filter bank design. Swarm and Evolutionary Computation, 2017, 33, 68- 84.
doi: 10.1016/j.swevo.2016.10.003 |
21 | VALIAN E, TAVAKOLI S, MOHANNA S, et al. Improved cuckoo search for reliability optimization problems. Computers & Industrial Engineering, 2013, 64 (1): 459- 468. |
22 | KANAGARAJ G, PONNAMBALAM S, JAWAHAR N. A hybrid cuckoo search andgenetic algorithm for reliabilityredundancy allocation problems. Computers & Industrial Engineering, 2013, 66 (4): 1115- 1124. |
23 | WALTON S, HASSAN O, MORGAN K, et al. Modified cuckoo search: a new gradient free optimisation algorithm. Chaos Solitons & Fractals, 2011, 44 (9): 710- 718. |
24 |
MOHAMMAD S, AHAMAD T K, MOHAMMED A A. A survey on applications and variants of the cuckoo search algorithm. Applied Soft Computing, 2017, 61, 1041- 1059.
doi: 10.1016/j.asoc.2017.02.034 |
25 |
HARUNA C, TUTUT H, IZTOK J F, et al. Bio-inspired computation: recent development on the modifications of the cuckoo search algorithm. Applied Soft Computing, 2017, 61, 149- 173.
doi: 10.1016/j.asoc.2017.07.053 |
26 |
ZHU G P, KWONG S. Gbest-guided artificial bee colony algorithm for numerical function optimization. Applied Mathematics and Computation, 2010, 217, 3166- 3173.
doi: 10.1016/j.amc.2010.08.049 |
27 | OMRAN M G H, MAHDAVI M. Global-best harmony search. Applied Mathematics & Computation, 2008, 198 (2): 643- 656. |
28 |
RAJABIOUN R. Cuckoo optimization algorithm. Applied Soft Computing Journal, 2011, 11 (8): 5508- 5518.
doi: 10.1016/j.asoc.2011.05.008 |
29 |
CHOJACZYK A A, TEIXEIRA A P, NEVES L C. Review and application of artificial neural networks models in reliability analysis of steel structures. Structural Safety, 2015, 52, 78- 89.
doi: 10.1016/j.strusafe.2014.09.002 |
30 |
MIRJALILI S, LEWIS A. The whale optimization algorithm. Advances in Engineering Software, 2016, 95, 51- 67.
doi: 10.1016/j.advengsoft.2016.01.008 |
31 |
MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 2016, 96, 120- 133.
doi: 10.1016/j.knosys.2015.12.022 |
32 |
MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 2017, 114, 163- 191.
doi: 10.1016/j.advengsoft.2017.07.002 |
33 | HASOFER A M, LIND N C. Exact and invariant secondmoment code format. Journal of the Engineering Mechanics Division, 1974, 100 (1): 111- 121. |
34 | GARG H. A hybrid PSO-GA algorithm for constrained optimization problems. Applied Mathematics & Computation, 2016, 274 (11): 292- 305. |
35 | TAN X H, BI W H, HOU X L, et al. Reliability analysis using radial basis function networks and support vector machines. Computers & Geotechnics, 2011, 38 (2): 178- 186. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||