Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (2): 259269.doi: 10.21629/JSEE.2019.02.05
• Electronics Technology • Previous Articles Next Articles
Zhoufan LI(), Dan LI*(), Xinlong XU(), Jianqiu ZHANG()
Received:
20180607
Online:
20190401
Published:
20190428
Contact:
Dan LI
Email:15210720031@fudan.edu.cn;lidan@fudan.edu.cn;11210720032@fudan.edu.cn;jqzhang@ieee.org
About author:
LI Zhoufan was born in 1992. He received his B.Sc. degree in electrical engineering from Fudan University, Shanghai, China, in 2015. He is currently working towards his M.S. degree in Department of Electronic Engineering, Fudan University, Shanghai, China. His research interests include digital signal processing and its application in wireless communication. Email:Supported by:
Zhoufan LI, Dan LI, Xinlong XU, Jianqiu ZHANG. New normalized LMS adaptive filter with a variable regularization factor[J]. Journal of Systems Engineering and Electronics, 2019, 30(2): 259269.
Table 1
Simulation parameters of the proposed algorithm and its competitors"
Algorithm  Variable step  Parameter 
SMNLMS [  
NPVSSNLMS [  
NVSSNLMS [  
JONLMS [  
NVSSLMS [  
 
Proposed algorithm 
1  WIDROW B, STEARNS S D. Adaptive signal processing. Englewood Cliffs: PrenticeHall, 1985. 
2  HAYKIN S. Adaptive filter theory. 4th ed. Upper Saddle Rier, New Jersey: PrenticeHall, 2002. 
3  BENESTY J, HUANG Y. Adaptive signal processingapplications to realworld problems. Berlin: SpringerVerlag, 2003. 
4  HUANG Y, BENESTY J, CHEN J. Acoustic MIMO signal processing. Boston, MA: Springer, 2006. 
5 
MA T, CHEN J, CHEN W, et al. Unsupervised robust adaptive filtering against impulsive noise. Journal of Systems Engineering and Electronics, 2012, 23 (1): 32 39.
doi: 10.1109/JSEE.2012.00005 
6  GUO L, JUNG L. Necessary and sufficient conditions for stability of LMS. IEEE Trans. on Automatic Control, 1995, 42 (6): 761 770. 
7 
HASSIBI B, SAYED A H, KAILATH T. H^{∞} optimality of the LMS algorithm. IEEE Trans. on Signal Processing, 1996, 44 (2): 267 280.
doi: 10.1109/78.485923 
8 
EVANS J B, XUE P, LIU B. Analysis and implementation of variable step size adaptive algorithms. IEEE Trans. on Signal Processing, 1993, 41 (8): 2517 2535.
doi: 10.1109/78.229885 
9 
ABOULNASR T, MAYYAS K. A robust variable stepsize LMStype algorithm:analysis and simulations. IEEE Trans. on Signal Processing, 1997, 45 (3): 631 639.
doi: 10.1109/78.558478 
10  PAZAITIS D I, CONSTANTINIDES A G. A novel kurtosis driven variable stepsize adaptive algorithm. IEEE Trans. on Signal Processing, 2002, 47 (3): 864 872. 
11  ANTWEILER C, GRUNWALD J, QUACK H. Approximation of optimal step size control for acoustic echo cancellation. Proc. of the IEEE International Conference on Acoustics, 1997, 295 298. 
12 
MORGAN D R, KRATZER S G. On a class of computationally efficient, rapidly converging, generalized NLMS algorithms. IEEE Signal Processing Letters, 1996, 3 (8): 245 247.
doi: 10.1109/97.511808 
13 
GOLLAMUDI S, NAGARAJ S, KAPOOR S, et al. Setmembership filtering and a setmembership normalized LMS algorithm with an adaptive step size. IEEE Signal Processing Letters, 1998, 5 (5): 111 114.
doi: 10.1109/97.668945 
14  SHIN H C, SAYED A H, SONG W J. Variable stepsize NLMS and affine projection algorithms. IEEE Signal Processing Letters, 2008, 11 (2): 132 135. 
15 
BENESTY J, REY H, VEGA L R, et al. A nonparametric VSS NLMS algorithm. IEEE Signal Processing Letters, 2006, 13 (10): 581 584.
doi: 10.1109/LSP.2006.876323 
16 
HUANG H C, LEE J. A new variable stepsize NLMS algorithm and its performance analysis. IEEE Trans. on Signal Processing, 2012, 60 (4): 2055 2060.
doi: 10.1109/TSP.2011.2181505 
17 
ARABLOUEI R, DOGANCAY K. Linearlyconstrained recursive total leastsquares algorithm. IEEE Signal Processing Letters, 2012, 19 (12): 821 824.
doi: 10.1109/LSP.2012.2221705 
18  BENESTY J, GAENSLER T, MORGAN D R, et al. Advances in network and acoustic echo cancellation. Berlin: SpringerVerlag, 2001. 
19  FAZA A, GRANT S L, BENESTY J. Adaptive regularization in frequencydomain NLMS filters. Proc. of the Signal Processing Conference, 2012, 2625 2628. 
20 
BENESTY J, PALEOLOGU C, CIOCHINA S. On regularization in adaptive filtering. IEEE Trans. on Audio, Speech and Language Processing, 2011, 19 (6): 1734 1742.
doi: 10.1109/TASL.2010.2097251 
21 
NI J, LI F. Variable regularisation parameter sign subband adaptive filter. Electronics Letters, 2010, 46 (24): 1605 1607.
doi: 10.1049/el.2010.2406 
22 
MADER A, PUDER H, SCHMIDT G U. Stepsize control for acoustic echo cancellation filtersan overview. Signal Processing, 2000, 80 (9): 1697 1719.
doi: 10.1016/S01651684(00)000827 
23 
SULYMAN A I, ZERGUINE A. Convergence and steadystate analysis of a variable stepsize NLMS algorithm. Signal Processing, 2003, 83 (6): 1255 1273.
doi: 10.1016/S01651684(03)000446 
24 
PARK P, CHANG M, KONG N. Scheduledstepsize NLMS algorithm. IEEE Signal Processing Letters, 2009, 16 (12): 1055 1058.
doi: 10.1109/LSP.2009.2026197 
25 
SONG I, PARK P G. A normalized leastmeansquare algorithm based on variablestepsize recursion with innovative input data. IEEE Signal Processing Letters, 2012, 19 (12): 817 820.
doi: 10.1109/LSP.2012.2221699 
26  YUAN Z, SONGTAO X. New LMS adaptive filtering algorithm with variable step size. Proc. of the International Conference on Vision, Image and Signal Processing, 2017, 1 4. 
27  LI M, XI X. A new variable stepsize NLMS adaptive filtering algorithm. Proc. of the Information Technology and Applications, 2013, 236 239. 
28  HUAN Q Y, QIU X H, LIU X F. Variable step LMS algorithm using norm of the hyperbolic tangent function. Journal of Signal Processing, 2014, 30 (1): 93 99. 
29  WANG Y, SUN X, LIU L. A variable step size LMS adaptive filtering algorithm based on L2 norm. Proc. of the Signal Processing, Communications and Computing, 2016, 1 6. 
30 
CIOCHINĂ S, PALEOLOGU C, BENESTY J. An optimized NLMS algorithm for system identification. Signal Processing, 2016, 118, 115 121.
doi: 10.1016/j.sigpro.2015.06.016 
31 
BHOTTO M Z A, ANTONIOU A. New improved recursive leastsquares adaptivefiltering algorithms. IEEE Trans. on Circuits and Systems Ⅰ:Regular Papers, 2013, 60 (6): 1548 1558.
doi: 10.1109/TCSI.2012.2220452 
32 
CASTOLDI F T, DE CAMPOS M L R. Application of a minimumdisturbance description to constrained adaptive filters. IEEE Signal Processing Letters, 2013, 20 (12): 1215 1218.
doi: 10.1109/LSP.2013.2284384 
33 
GUL M M U, MA X, LEE S. Timing and frequency synchronization for OFDM downlink transmissions using zadoffchu sequences. IEEE Trans. on Wireless Communications, 2015, 14 (3): 1716 1729.
doi: 10.1109/TWC.2014.2372757 
[1]  Wenlong Lu, Junwei Xie, Heming Wang, and Chuan Sheng. Parameterized timefrequency analysis to separate multiradar signals [J]. Systems Engineering and Electronics, 2017, 28(3): 493502. 
[2]  Wei Gao, Jianguo Huang, Jing Han, and Qunfei Zhang. Theoretical convergence analysis of complex Gaussian kernel LMS algorithm [J]. Systems Engineering and Electronics, 2016, 27(1): 39. 
[3]  Tao Ma, Jie Chen, Wenjie Chen, and Zhihong Peng. Unsupervised robust adaptive filtering against impulsive noise [J]. Journal of Systems Engineering and Electronics, 2012, 23(1): 3239. 
Viewed  
Full text 


Abstract 

