1 
TURYN R J. The linear generation of the legendre sequence. Journal of the Society for Industrial and Applied Mathematics, 1964, 12 (1): 115 116.
doi: 10.1137/0112010

2 
DING C, HESSESETH T, SHAN W. On the linear complexity of Legendre sequences. IEEE Trans. on Information Theory, 1998, 44 (3): 1276 1278.
doi: 10.1109/18.669398

3 
STANTON R G, SPROTT D A. A family of difference sets. Canadian Journal of Mathematics, 1958, 6 (1): 73 77.

4 
DING C. Binary cyclotomic generators. Lecture Notes in Computer Science, 1994, 1008, 29 60.

5 
DING C. Linear complexity of generalized cyclotomic binary sequences of order 2. Finite Fields and Their Applications, 1997, 3 (2): 159 174.
doi: 10.1006/ffta.1997.0181

6 
DING C. Autocorrelation values of generalized cyclotomic sequences of order two. IEEE Trans. on Information Theory, 1998, 44 (4): 1699 1702.
doi: 10.1109/18.681354

7 
BAI E, FU X, XIAO G. On the linear complexity of generalized cyclotomic sequences of order four over Zpq. IEICE Trans. on Fundamentals, 2005, 88 (1): 392 395.

8 
BRANDSTÄTTER N, WINTERHOF A. Some notes of the twoprime generator of order 2. IEEE Trans. on Information Theory, 2005, 51 (10): 3654 3657.
doi: 10.1109/TIT.2005.855615

9 
DING C, HELLESETH T. New generalized cyclotomy and its application. Finite Fields and Their Applications, 1998, 4 (2): 140 166.
doi: 10.1006/ffta.1998.0207

10 
BAI E, LIU X. Generalized cyclotomic sequences of order four over Z pq and their autocorrelation values. Chinese Journal of Engineering Mathematics, 2008, 25 (5): 894 900.

11 
BAI E, LIU X, XIAO G. Lilnear complexity of new generelized cyclotomic sequences of order two of length pq. IEEE Trans. on Information Theory, 2005, 51 (5): 1849 1853.
doi: 10.1109/TIT.2005.846450

12 
YAN T, HONG L, XIAO G. The linear complexity of new generalized cyclotomic binary sequences of order four. Information Sciences, 2008, 178 (3): 807 815.

13 
JIN S, KIM Y, SONG H. Autocorrelation of new generalized cyclotomic sequences of period pn. IEICE Trans. on Fundamentals, 2010, 93 (11): 2345 2348.

14 
KE P, ZHANG J, ZHANG S. On the linear complexity and the autocorrelation of generalized cyclotomic binary sequences of length 2pm. Designs, Codes and Cryptography, 2013, 67 (3): 325 339.
doi: 10.1007/s1062301296109

15 
LI S, CHEN Z, SUN R, et al. On the randomness of generalized cyclotomic sequences of order two and length pq. IEICE Trans. on Fundamentals, 2007, 90 (9): 2037 2041.

16 
LI S, CHEN Z, FU X, et al. Autocorrelation values of new generalized cyclotomic sequences of order two and length pq. Journal of Computer Science and Technology, 2007, 22 (6): 830 834.
doi: 10.1007/s1139000790992

17 
Meidl W. Remarks on a cyclotomic sequence. Designs, Codes and Cryptography, 2009, 51 (1): 33 43.

18 
YAN T, SUN R, XIAO G. Autocorrelation and linear complexity of the new generalized cyclotomic sequences. IEICE Trans. on Fundamentals, 2008, 90 (4): 857 864.

19 
YAN T, DU X, XIAO G, et al. Linear complexity of binary Whiteman generalized cyclotomic sequences of order 2k. Information Sciences, 2009, 179 (7): 1019 1023.
doi: 10.1016/j.ins.2008.11.006

20 
YAN T, HUANG B, XIAO G. Cryptographic properties of some binary generalized cyclotomic sequences with the length p2. Information Sciences, 2008, 178 (4): 1078 1086.

21 
YAN T, LI S, XIAO G. On thelinear complexity of generalized cyclotomic sequences with the period pm. Appliced Mathematics Letters, 2008, 21 (2): 187 193.

22 
YAN T, CHEN Z, XIAO G. Linear complexity of Ding generalized cyclotomic sequences. Journal of Shanghai University, 2007, 11 (1): 22 26.
doi: 10.1007/s1174100701034

23 
ZHANG J, ZHAO C, MA X. Linear complexity of generalized cyclotomoc binary sequences of length 2pm. Applicable Algebra in Engineering, Communication and Computing, 2010, 21 (2): 93 108.
doi: 10.1007/s0020000901162

24 
CHEN Z, DU X, WU C. Pseodurandomness of certain sequences of k symbols with length pq. Journal of Computer Science and Technology, 2011, 26 (2): 276 282.
doi: 10.1007/s1139001194345

25 
CHEN Z, DU X. Linear complexity and autocorrelation values of a polyphase generalized cyclotomic sequence of length pq. Frontiers of Computer Science, 2010, 4 (4): 529 535.
doi: 10.1007/s1170401003293

26 
DING C, HELLESETH T. On cyclotomic generator of order r. Information Processing Letters, 1998, 66 (1): 21 25.

27 
CHANG Z, ZHOU Y, KE P. Linear complexity of new generalized cyclotomic sequences of order two and length pqr. Acta Electronica Science, 2015, 43 (1): 166 170.

28 
LIU L, YANG X, DU X, et al. On the linear complexity of new generalized cyclotomic binary sequences of order two and period pqr. Tsinghua Science and Technology, 2016, 21 (3): 295 301.
doi: 10.1109/TST.2016.7488740

29 
LYU C, XIAO G Z, YAN T J. On linear complexity of a new generalized cyclotmic sequence of order two over $\mathbb{Z}$_{p1p2p3}. Journal of Computational Information Systems, 2015, 11 (17): 6355 6362.

30 
CUSICK T W, DING C, RENVALL A. Stream cipher and number theory. Amsterdam: NorthHolland, 1988.

31 
LIDL R, NIEDERREITER H. Finite fields. 2nd ed Cambridge: Cambridge University Press, 1997.
