Journal of Systems Engineering and Electronics ›› 2019, Vol. 30 ›› Issue (4): 749759.doi: 10.21629/JSEE.2019.04.12
• Systems Engineering • Previous Articles Next Articles
Received:
20180227
Online:
20190801
Published:
20190901
Contact:
Yanhua HAN
Email:hanyanhua@nuaa.edu.cn;1097524513@qq.com
About author:
HAN Yanhua was born in 1976. He received his Ph.D. degree in navigation, guidance and control from Northwestern Polytechnical University in 2006. He is currently an associate professor in the College of Astronautics at Nanjing University of Aeronautics and Astronautics. His research interests include tethered satellite system, and space manipulator. Email: Supported by:
Yanhua HAN, Junting HONG. Retrieval strategy for failed satellite on tether's optimal balance swing angle[J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 749759.
Table 1
Dimensionless variables and/or parameters"
Dimensionless variables and/or parameters  Computational formula  
Dimensionless mass  
Dimensionless length  
Dimensionless time  
Dimensionless force 
Table 2
Input parameters for simulation"
Input parameter  Value 
1 
SHAN M H, GUO J, JILL E. Review and comparison of active space debris capturing and removal methods. Progress in Aerospace Sciences, 2016, 80, 18 32.
doi: 10.1016/j.paerosci.2015.11.001 
2 
NISHIDA S I, KAWAMOTO S, OKAWA Y, et al. Space debris removal system using a small satellite. Acta Astronautica, 2009, 65, 95 102.
doi: 10.1016/j.actaastro.2009.01.041 
3  WEN H, JIN D P, HU H Y. Retrieval control of an electrodynamic tethered satellite in an inclined orbit. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40 (3): 375 380. 
4 
WEN H, JIN D P, HU H Y. Feedback control for retrieving an electrodynamic tethered subsatellite. Tsinghua Science and Technology, 2009, 14 (S2): 79 83.
doi: 10.1016/S10070214(10)700365 
5  WEN H, JIN D P, HU H Y. Removing singularity of orientation description for modeling and controlling an electrodynamic tether. Journal of Guidance, Control, and Dynamics, 2018, 41 (3): 761 766. 
6 
HUANG P F, HU Z H, MENG Z J. Coupling dynamics modeling and optimal coordinated control of tethered space robot. Aerospace Science and Technology, 2015, 41, 36 46.
doi: 10.1016/j.ast.2014.12.006 
7 
LINSKENS H T K, MOOIJ E. Tether dynamics analysis and guidance and control design for active spacedebris removal. Journal of Guidance, Control, and Dynamics, 2016, 39 (6): 1232 1243.
doi: 10.2514/1.G001651 
8  HUANG P F, WANG D K, MENG Z J, et al. Impact dynamic modeling and adaptive target capturing control for tethered space robots with uncertainties. IEEE/ASME Trans. on Mechatronics, 2016, 21 (5): 2260 2271. 
9  HUANG P F, WANG D K, MENG Z J, et al. Adaptive postcapture backstepping control for tumbling tethered space robottarget combination. Journal of Guidance, Control, and Dynamics, 2016, 39 (1): 150 156. 
10  JAWORSKI P, LAPPAS V, TSOURDOS A, et al. Debris rotation analysis during tethered towing for active debris removal. Journal of Guidance, Control, and Dynamics, 2017, 40 (7): 1768 1778. 
11  MENG Z J, HUANG P F, WANG D K. Inplane adaptive retrieval method for tethered space robots after target capturing. Acta Aeronautica et Astronautica Sinica, 2015, 36 (12): 4035 4042. 
12 
HUANG P F, ZHANG F, MENG Z J. Adaptive control for space debris removal with uncertain kinematics, dynamics and states. Acta Astronautica, 2016, 128, 416 430.
doi: 10.1016/j.actaastro.2016.07.043 
13  LAKSO J J, COVERSTONE V L. Optimal tether deployment/retrieval trajectories using direct collocation. Proc. of the AIAA/AAS Astrodynamics Specialist Conference, 2000: 19. 
14  YU B S, JIN D P. Asymptotic stabilization for deployment and retrieval of a tethered satellite system. Chinese Space Science and Technology, 2013, (5): 35 43. 
15  WILLIAMS P, TRIVAILO P. On the optimal deployment and retrieval of tethered satellites. Proc. of the 41st AIAA/ASME/SAE/ASEE Joint Propulsions Conference and Exhibit, 2005, DOI: 10.2514/6.20054291. 
16 
WILLIAMS P. Optimal deployment/retrieval of tethered satellites. Journal of Spacecraft and Rockets, 2008, 45 (2): 324 343.
doi: 10.2514/1.31804 
17  ZHONG R, ZHU Z H. Timescale separate optimal control of tethered spacetug systems for spacedebris removal. Journal of Guidance, Control, and Dynamics, 2016, 39 (11): 2539 2544. 
18 
SUN G H, ZHU Z H. Fractional order tension control for stable and fast tethered satellite retrieval. Acta Astronautica, 2014, 104, 304 312.
doi: 10.1016/j.actaastro.2014.08.012 
19 
YU B S, JIN D P. Deployment and retrieval of tethered satellite system under J2 perturbation and heating effect. Acta Astronautica, 2010, 67, 845 853.
doi: 10.1016/j.actaastro.2010.05.013 
20  QI R, MISRA A K, ZUO Z Y. Active debris removal using doubletethered spacetug system. Journal of Guidance, Control, and Dynamics, 2017, 40 (3): 720 728. 
21  ZHANG F, HUANG P F. Releasing dynamics and stability control of maneuverable tethered space net. IEEE/ASME Trans. on Mechatronics, 2017, 22 (2): 983 993. 
22 
ZHANG F, HUANG P F, MENG Z J, et al. Dynamics analysis and controller design for maneuverable tethered space net robot. Journal of Guidance, Control, and Dynamics, 2017, 40 (11): 2828 2843.
doi: 10.2514/1.G002656 
23 
LIU Y, HUANG P F, ZHANG F, et al. Distributed formation control using artificial potentials and neural network for Constrained multiagent systems. IEEE Trans. on Control Systems Technology, 2018.
doi: 10.1109/TCST.2018.2884226 
24 
MENG Z J, HUANG P F, GUO J. Approach modeling and control of an autonomous maneuverable space net. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (6): 2651 2661.
doi: 10.1109/TAES.2017.2709794 
25 
HUANG P F, HU Z H, ZHANG F. Dynamic modeling and coordinated controller designing for the maneuverable tethernet space robot system. Multibody System Dynamics, 2016, 36, 115 141.
doi: 10.1007/s1104401594783 
26 
CASTRONUOVO M M. Active space debris removala preliminary mission analysis and design. Acta Astronautica, 2011, 69, 848 859.
doi: 10.1016/j.actaastro.2011.04.017 
27 
PASCAL M, DJEBLI A, BAKKALI L E. Laws of deployment/retrieval in tether connected satellites systems. Acta Astronautica, 1999, 45 (2): 61 73.
doi: 10.1016/S00945765(99)001150 
28 
MISSEL J, MORTARI D. Path optimization for space sweeper with slingsat:a method of active space debris removal. Advances in Space Research, 2013, 52, 1339 1348.
doi: 10.1016/j.asr.2013.07.008 
29 
MISSEL J, MORTARI D. Removing space debris through sequential captures and ejections. Journal of Guidance, Control, and Dynamics, 2013, 36 (3): 743 752.
doi: 10.2514/1.58768 
30  ZEIDLER E, HACKBUSCH W, SCHWARZ H R, et al. TeubnerTaschenbuch der mathematik. LI W L. Trans. Beijing: Science Press, 2012. 
No related articles found! 
Viewed  
Full text 


Abstract 

