Journal of Systems Engineering and Electronics ›› 2020, Vol. 31 ›› Issue (1): 12-18.doi: 10.21629/JSEE.2020.01.02
• Electronics Technology • Previous Articles Next Articles
Haifen YANG*(), Suxin YAN(), Hao ZHANG(), Yan REN(), Xiangdong HU(), Shuisheng LIN()
Received:
2019-05-07
Online:
2020-02-20
Published:
2020-02-25
Contact:
Haifen YANG
E-mail:yanghf@uestc.edu.cn;sx_yan@126.com;zhanghao_sice@163.com;renyanstone@163.com;379482415@qq.com;sslin@uestc.edu.cn
About author:
YANG Haifen was born in 1977. She received her Ph.D. degree in 2008 from the Department of Communication and Information Engineering, University of Electronic and Science Technology of China (UESTC), Chengdu. She is now an associate professor in UESTC. Her research interests include signal processing in wireless communications. E-mail: Supported by:
Haifen YANG, Suxin YAN, Hao ZHANG, Yan REN, Xiangdong HU, Shuisheng LIN. A simplified decoding algorithm for multi-CRC polar codes[J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 12-18.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
ARIKAN E. Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. on Information Theory, 2009, 55 (7): 3051- 3073.
doi: 10.1109/TIT.2009.2021379 |
2 | ARIKAN E. Channel polarization: a method for constructing capacity-achieving codes. Proc. of the IEEE International Symposium on Information Theory, 2008, 1173- 1177. |
3 | 3GPP TS 36.212. Multiplexing and channel coding. https://www.3gpp.org/ftp/specs/. |
4 | ELKELESH A, EBADA M, CAMMERER S, et al. Genetic algorithm-based polar code construction for the AWGN channel. Proc. of the 12th International ITG Conference on Systems, Communications and Coding, 2019, 1- 6. |
5 | ZHOU D, NIU K, DONG C. Construction of polar codes in Rayleigh fading channel. IEEE Communications Letters, 2019, 23 (11): 402- 405. |
6 | ZHAO S, SHAO Z, CHEN H. Puncturing method for systematic polar code based on decoding reliability. Journal of Southeast University, 2017, 47 (1): 23- 26. |
7 | LIU Z, NIU K, DONG C, et al. Adding a rate-1 third dimension to parallel concatenated systematic polar code: 3D polar code. Wireless Communications and Mobile Computing, 2018, 18, 1- 6. |
8 | CAVATASSI A, TONNELLIER T, GROSS W J. Asymmetric construction of low-latency and length-flexible polar codes. Proc. of the IEEE International Conference on Communication, 2019, 1- 6. |
9 |
MOROZOV R, TRIFONOV P. On distance properties of convolutional polar codes. IEEE Trans. on Communications, 2019, 67 (7): 1- 8.
doi: 10.1109/TCOMM.2019.2925514 |
10 |
ZHANG Q, LIU A, ZHANG Y. Practical design and decoding of parallel concatenated structure for systematic polar codes. IEEE Trans. on Communication, 2016, 64 (2): 456- 466.
doi: 10.1109/TCOMM.2015.2502246 |
11 | LIU Z, NIU K, CHAO D. Convergence analysis and performance optimization of parallel concatenated systematic polar code. The Journal of China Universities of Posts and Telecommunications, 2018, 25 (2): 1- 9. |
12 | CHEN K, NIU K, LIN J R. Improved successive cancellation decoding of polar codes. Electronics Letters, 2012, 61 (8): 3100- 3107. |
13 |
NIU K, CHEN K. Stack decoding of polar codes. Electronics Letters, 2012, 48 (12): 695- 697.
doi: 10.1049/el.2012.1459 |
14 | KAMENEV M, KAMENEVA Y, KURMAEV O, et al. Permutation decoding of polar codes. https://arxiv.org/abs/1901.05459. |
15 | JEONG M O, HONG S N. SC-Fano decoding of polar codes. IEEE Access, DOI: 10.1109/ACCESS.2019.2924011. |
16 |
ZHANG Y, LIU A, PAN X, et al. A modified belief propagation polar decoder. IEEE Communications Letters, 2014, 18 (7): 1091- 1094.
doi: 10.1109/LCOMM.2014.2316365 |
17 | SUN S, CHO S G, ZHANG Z. Post-processing methods for improving coding gain in belief propagation decoding of polar codes. Proc. of the IEEE Global Communications Conference, 2017, 1- 6. |
18 | SIMSEK C, TURK K. Hardware optimization for belief propagation polar code decoder with early stopping criteria using high-speed parallel-prefix ling adder. Proc. of the International Conference on Telecommunications and Signal Processing, 2017, 182- 185. |
19 |
HAN K, WANG J, GROSS W J, et al. Stochastic bit-wise iterative decoding of polar codes. IEEE Trans. on Signal Processing, 2019, 67 (5): 1138- 1151.
doi: 10.1109/TSP.2018.2890066 |
20 |
NIU K, CHEN K, LIN J. Low-complexity sphere decoding of polar codes based on optimum path metric. IEEE Communications Letters, 2014, 18 (2): 332- 335.
doi: 10.1109/LCOMM.2014.010214.131826 |
21 |
PIAO J, DAI J, NIU K. CRC-aided sphere decoding for short polar codes. IEEE Communications Letters, 2019, 23 (2): 210- 213.
doi: 10.1109/LCOMM.2018.2885771 |
22 |
HUSMANN C, NIKOLAOU P C, NIKITOPOULOS K. Reduced latency ML polar decoding via multiple sphere-decoding tree searches. IEEE Trans. on Vehicular Technology, 2018, 67 (2): 1835- 1839.
doi: 10.1109/TVT.2017.2761262 |
23 | GOELA N, KORADA S B, GASTPAR M. On LP decoding of polar codes. Proc. of the IEEE Information Theory Workshop, 2010, 1- 5. |
24 | CAVATASSI A, TONNELLIER T, GROSS W J. Fast decoding of multi-kernel polar codes. Proc. of the IEEE Wireless Communication and Networking Conference, 2019, 1- 6. |
25 | SEO J, LEE J, KIM K. Decoding of polar code by using deep feed-forward neural networks. Proc. of the International Conference on Computing, Networking and Communications, 2018, 238- 242. |
26 | TAL I, VARDY A. List decoding of polar codes. Proc. of the IEEE International Symposium on Information Theory Proceedings, 2011, 1- 5. |
27 |
CHEN K, NIU K, LIN J. List successive cancellation decoding of polar codes. Electronics Letters, 2012, 48 (9): 500- 501.
doi: 10.1049/el.2011.3334 |
28 |
NIU K, CHEN K. CRC-aided decoding of polar codes. IEEE Communications Letters, 2012, 16 (10): 1668- 1671.
doi: 10.1109/LCOMM.2012.090312.121501 |
29 |
ALAMDAR-YAZDI A, KSCHISCHANG F R. A simplified successive-cancellation decoder for polar codes. IEEE Communications Letters, 2011, 15 (12): 1378- 1380.
doi: 10.1109/LCOMM.2011.101811.111480 |
30 | HASHEMI S A, CONDO C, GROSS W J. Fast simplified successive-cancellation list decoding of polar codes. Proc. of the IEEE International Symposium on Information Theory, 2016, 815- 819. |
31 |
BALATSOUKAS-STIMMING A, BASTANI PARIZI M, BURG A. LLR-based successive cancellation list decoding of polar codes. IEEE Trans. on Signal Processing, 2015, 63 (19): 5165- 5179.
doi: 10.1109/TSP.2015.2439211 |
32 |
BERHAULT G, LEROUX C, JEGO C. Memory requirement reduction method for successive cancellation decoding of polar codes. Journal of Signal Processing Systems, 2017, 88 (3): 425- 438.
doi: 10.1007/s11265-016-1179-5 |
33 |
LI B, SHEN H, TSE D. An adaptive successive cancellation list decoder for polar codes with cyclic redundancy check. IEEE Communications Letters, 2012, 16 (12): 2044- 2047.
doi: 10.1109/LCOMM.2012.111612.121898 |
34 | HASHEMI S A, MONDELLI M, HASSANI S H, et al. Partitioned list decoding of polar codes: analysis and improvement of finite length performance. Proc. of the IEEE Global Communication Conference, 2017, 1- 7. |
35 |
HASHEMI S A, MONDELLI M, HASSANI S H, et al. Decoder partitioning: towards practical list decoding of polar codes. IEEE Trans. on Communications, 2018, 66 (9): 3749- 3759.
doi: 10.1109/TCOMM.2018.2832207 |
36 | ZHOU H, LIANG X, LI L, et al. Segmented successive cancellation list polar decoding with tailored CRC. Journal of Signal Processing Systems, 2019, 8 (1): 923- 935. |
37 |
ELKELESH A, EBADA M, CAMMERER S, et al. Decoder-tailored polar code design using the genetic algorithm. IEEE Trans. on Communications, 2019, 67 (7): 4521- 4534.
doi: 10.1109/TCOMM.2019.2908870 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||