1 |
WANG Q, STENGEL R. Robust nonlinear flight control of a high-performance aircraft. Journal of Guidance, Control and Dynamics, 2005, 13 (1): 15- 26.
|
2 |
SONNEVELDT L. Advances in flight control systems: adaptive backstepping flight control for modern fighter aircraft. Slavka Krautzeka: In Tech, 2010.
|
3 |
LYU Y, CAO Y, ZHANG W, et al. Dynamic surface control design of post-stall maneuver under unsteady aerodynamics. Aerospace Science and Technology, 2018, 80, 269- 280.
doi: 10.1016/j.ast.2018.06.037
|
4 |
SINHA M, KUTTIERI R, GHOSH A, et al. High angle of attack parameterestimation of cascaded fins using neural network. Journal of Guidance, Control and Dynamics, 2013, 50 (1): 272- 291.
|
5 |
SNELL S, ENNS D, GARRARD W. Nonlinear inversion flight control for a supermaneuverable aircraft. Journal of Guidance, Control and Dynamics, 1992, 15 (4): 976- 984.
|
6 |
ADAMS R, BUFFINGTON J, BANDA S. Design of nonlinear control laws for high-angle-of-attack flight. Journal of Guidance, Control and Dynamics, 1994, 17 (4): 737- 746.
|
7 |
SINGH S, STEINBERG M, PAGE A. Nonlinear adaptive and sliding mode flight path control of F/A-18 model. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39 (4): 1250- 1262.
doi: 10.1109/TAES.2003.1261125
|
8 |
CHIANG R, SAFONOV M, HAIGES K. A fixed $H\infty $ controller for a supermaneuverable fighter performing the Herbst maneuver. Automatica, 1993, 29 (1): 111- 127.
doi: 10.1016/0005-1098(93)90176-T
|
9 |
SUN M W, WANG Z H, CHEN Z Q. Practical solution to attitude control within wide envelope. Aircraft Engineering and Aerospace Technology, 2014, 86 (2): 117- 128.
doi: 10.1108/AEAT-10-2012-0167
|
10 |
HAN J Q. From PID to active disturbance rejection control. IEEE Trans. on Industrial Electronics, 2009, 56 (3): 900- 906.
|
11 |
GAO Z Q. On the centrality of disturbance rejection in automatic control. ISA Transactions, 2014, 53 (4): 850- 857.
doi: 10.1016/j.isatra.2013.09.012
|
12 |
ZHENG Q, CHEN Z, GAO Z Q. A practical approach to disturbance decoupling control. Control Engineering Practice, 2009, 17 (9): 1016- 1025.
|
13 |
LIU H, LI S. Speed control for PMSM servo system using predictive functional control and extended state observer. IEEE Trans. on Industrial Electronics, 2011, 59 (2): 1171- 1183.
|
14 |
SUN M W, WANG Z H, WANG Y, et al. On low-velocity compensation of brushless DC servo in the absence of friction model. IEEE Trans. on Industrial Electronics, 2013, 60 (9): 3897- 3905.
doi: 10.1109/TIE.2012.2208434
|
15 |
SUN L, LI D H, HU K, et al. On tuning and practical implementation of active disturbance rejection controller: a case study from a regenerative heater in a 1000 MW power plant. Industrial & Engineering Chemistry Research, 2016, 55 (23): 6686- 6695.
|
16 |
ZHANG D Y, YAO X L, WU Q H, et al. ADRC based control for a class of input time delay systems. Journal of Systems Engineering and Electronics, 2017, 28 (6): 1210- 1220.
doi: 10.21629/JSEE.2017.06.19
|
17 |
GONG L G, WANG Q, DONG C Y. Switching disturbance rejection attitude control of near space vehicles with variable structure. Journal of Systems Engineering and Electronics, 2019, 30 (1): 167- 179.
|
18 |
SONNEVELDT L, CHU Q P, MULDER J A. Nonlinear flight control design using constrained adaptive backstepping. Journal of Guidance, Control and Dynamics, 2007, 30 (2): 322- 336.
|
19 |
GODBOLE A, TALOLE S. Extending the operating range of linear controller by means of ESO. Proc. of the International Conference on Computational Intelligence and Information Technology, 2011: 44-49.
|
20 |
HU C F, ZHOU X, SUN B, et al. Nussbaum-based fuzzy adaptive nonlinear fault-tolerant control for hypersonic vehicles with diverse actuator faults. Aerospace Science and Technology, 2017, 71, 432- 440.
doi: 10.1016/j.ast.2017.10.002
|