1 |
TAFLOVE A, HAGNESS S C. Computational electrodynamics: the finite-difference time-domain method. Boston: Artech House, 2005.
|
2 |
BERENGER J P A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 1994, 114 (2): 185- 200.
doi: 10.1006/jcph.1994.1159
|
3 |
CHEW W C, WEEDON W H A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microwave and Optical Technology Letters, 1994, 7 (13): 599- 604.
doi: 10.1002/mop.4650071304
|
4 |
JIANG H L, CUI T J Simple implementation for finite-difference time-domain method. Electronic Letters, 2018, 54 (16): 988- 990.
|
5 |
SACKS Z S, KINGSLAND D M, LEE R, et al A perfectly matched anisotropic absorber for use as an absorbing condition. IEEE Trans. on Antennas and Propagation, 1995, 43 (12): 1460- 1463.
doi: 10.1109/8.477075
|
6 |
CUMMER S A A simple, nearly perfectly matched layer for general electromagnetic media. IEEE Microwave & Wireless Components Letters, 2003, 13 (3): 128- 130.
|
7 |
BERENGER J P Evanescent waves in PML’s: origin of the numerical reflection in wave-structure interaction problems. IEEE Trans. on Antennas and Propagation, 1999, 47 (10): 1497- 1503.
doi: 10.1109/8.805891
|
8 |
BERENGER J P Numerical reflection from FDTD-PMLs: a comparison of the split PML with the unsplit and CFS PMLs. IEEE Trans. on Antennas and Propagation, 2002, 50 (3): 258- 265.
doi: 10.1109/8.999615
|
9 |
KUZUOGLU M, MITTRA R Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. IEEE Microwave & Guided Wave Letters, 1996, 6 (12): 447- 449.
|
10 |
CORREIA D, JIN J M Performance of regular PML, CFS-PML, and second-order PML for waveguide problems. Microwave and Optical Technology Letters, 2006, 48 (10): 2121- 2126.
doi: 10.1002/mop.21872
|
11 |
GIANNOPOULOS A Unsplit implementation of higher order PMLs. IEEE Trans. on Antennas and Propagation, 2012, 60 (3): 1479- 1485.
doi: 10.1109/TAP.2011.2180344
|
12 |
LI J X, WU P Y, JIANG H L The implementation of unconditionally stable higher order PML based on the implicit CNAD-FDTD algorithm. Journal of Electromagnetic Waves and Applications, 2019, 33 (2): 151- 164.
doi: 10.1080/09205071.2018.1530615
|
13 |
JIANG H L, ZHANG J F, CUI T J An alternative PML implementation for arbitrary media. IEEE Trans. on Antennas and Propagation, 2018, 67 (1): 612- 615.
|
14 |
JIANG H L, CUI T J, WU L T, et al Efficient implementations of SC-PML for arbitrary media using DSP techniques. IEEE Trans. on Electromagnetic Compatibility, 2018, 61 (3): 962- 965.
|
15 |
RODEN J A, GEDNEY S D Convolution PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media. Microwave and Optical Technology Letters, 2000, 27 (5): 334- 339.
doi: 10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A
|