1 |
VESELAGO V G The electrodynamics of substances with simultaneously negative values of ε and μ. Physics-Uspekhi, 1968, 10 (4): 509- 514.
doi: 10.1070/PU1968v010n04ABEH003699
|
2 |
AFROOZ K Time-domain analysis of extended composite right/left handed transmission line excited by modulated signal using unconditionally stable FDTD algorithm. IET Science, Measurement & Technology, 2018, 12 (6): 785- 794.
|
3 |
LI J C A literature survey of mathematical study of metamaterials. International Journal of Numerical Analysis and Modeling, 2016, 13 (2): 230- 243.
|
4 |
MOHARRAM F, ATLASBAF Z Simulation of multilayer graphene-dielectric metamaterial by implementing SBC model of graphene in the HIE-FDTD method. IEEE Trans. on Antennas and Propagation, 2020, 68 (3): 2238- 2245.
doi: 10.1109/TAP.2019.2948505
|
5 |
LI W S, LIANG D The energy conservative splitting FDTD scheme and its energy identities for metamaterial electromagnetic Lorentz system. Computer Physics Communications, 2019, 239, 94- 111.
doi: 10.1016/j.cpc.2019.01.003
|
6 |
TAFLOVE A, HAGNESS S C. Computational electrodynamics: the finite-difference time-domain method. 3rd ed. Boston: Artech House, 2005.
|
7 |
SUN G, TRUEMAN C W Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell ’s equations. Electronic Letters, 2003, 39 (7): 595- 597.
doi: 10.1049/el:20030416
|
8 |
SUN G, TRUEMAN C W Approximate Crank-Nicolson schemes for the 2-D finite-difference time-domain method for TEz waves. IEEE Trans. on Antennas and Propagation, 2004, 52 (11): 2963- 2972.
doi: 10.1109/TAP.2004.835142
|
9 |
WU P Y, XIE Y J, JIANG H L Higher-order CN-PML theory for ferrite simulations. Advances Theory Simulation, 2020, 3 (4): 1900221.
doi: 10.1002/adts.201900221
|
10 |
BERENGER J P A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 1994, 114 (2): 185- 200.
doi: 10.1006/jcph.1994.1159
|
11 |
CHEW W C, WEEDON W H A 3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microwave and Optical Technology Letters, 1994, 7 (13): 599- 603.
doi: 10.1002/mop.4650071304
|
12 |
CUMMER S A A simple, nearly perfectly matched layer for general electromagentic media. IEEE Microwave and Wireless Components Letters, 2003, 13 (3): 128- 130.
doi: 10.1109/LMWC.2003.810124
|
13 |
KUZUOGLU M, MITTRA R Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. IEEE Microwave and Guided Wave Letter, 1996, 6 (12): 447- 449.
doi: 10.1109/75.544545
|
14 |
CORREIA D, JIN J M On the development of a higher-order PML. IEEE Trans. on Antennas and Propagation, 2005, 53 (12): 4157- 4163.
doi: 10.1109/TAP.2005.859901
|
15 |
GIANNOPOULOS A Higher-order convolution PML (CPML) for FDTD electromagnetic modelling. IEEE Trans. on Antennas and Propagation, 2020, 68 (8): 6226- 6231.
doi: 10.1109/TAP.2020.2985169
|
16 |
LI J X, WU P Y, JIANG H L Implementation of higher order CNAD CFS-PML for truncating unmagnetised plasma. IET Microwaves, Antennas & Propagation, 2019, 13 (6): 756- 760.
|
17 |
LI J X, WU P Y, JIANG H L The implementation of unconditionally stable higher order PML based on the implicit CNAD-FDTD algorithm. Journal of Electromagnetic Waves and Applications, 2019, 33 (2): 151- 164.
doi: 10.1080/09205071.2018.1530615
|
18 |
SHI Y, LI Y, LIANG C H Perfectly matched layer absorbing boundary condition for truncating the boundary of the left-handed medium. Microwave and Optical Technology Letters, 2005, 48 (1): 57- 63.
|
19 |
LI J X, WU P Y Unconditionally stable higher order CNAD-PML for left-handed materials. IEEE Trans. on Antennas and Propagation, 2019, 67 (11): 7156- 7161.
doi: 10.1109/TAP.2019.2927761
|
20 |
JIANG H L, ZHENG J F, JIANG W X, et al Unconditionally stable CN-PML algorithm for frequency-dispersive left-handed materials. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 2006- 2009.
doi: 10.1109/LAWP.2017.2692883
|
21 |
HOSSEINI K, ATLASBAF Z PLRC-FDTD modeling of general GSTC-based dispersive bianisotropic metasurfaces. IEEE Trans. on Antennas and Propagation, 2018, 66 (1): 262- 270.
doi: 10.1109/TAP.2017.2769691
|
22 |
LIU J Z, HE S X, CHENG W L. Pinpoint and efficient DZT-based FDTD implementations using optimal 2nd-order PML truncation. Proc. of the Photonics & Electromagnetics Research Symposium-Fall, 2019: 897–902.
|