Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (2): 347-364.doi: 10.23919/JSEE.2021.000029
• INTELLIGENT OPTIMIZATION AND SCHEDULING • Previous Articles Next Articles
Zhongxiang CHANG1,2,3,*(), Zhongbao ZHOU1,2(), Feng YAO4(), Xiaolu LIU4()
Received:
2020-09-21
Online:
2021-04-29
Published:
2021-04-29
Contact:
Zhongxiang CHANG
E-mail:zx_chang@hnu.edu.cn;Z.B.Zhou@163.com;yaofeng@nudt.edu.cn;lxl_sunny_nudt@live.cn
About author:
Supported by:
Zhongxiang CHANG, Zhongbao ZHOU, Feng YAO, Xiaolu LIU. Observation scheduling problem for AEOS with a comprehensive task clustering[J]. Journal of Systems Engineering and Electronics, 2021, 32(2): 347-364.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
General parameters"
Parameter | Meaning | Value |
NS | The population size of all solutions | 100 |
NBest | The population size of elitist solutions | 50 |
NA | The population size of archive solutions | 100 |
MaxIter | The maximum number of iterations | 200 |
RS | The probability for selecting a ground target from AGT | 0.3 |
RBM | The probability of each ground target observed in the best image quality | 0.7 |
TR | The rate of the size of the taboo list to the total ground targets | 0.1 |
removeRate | The rate of removing a ground target/task from a set of scheduled ground targets/tasks | 0.6 |
insertRate | The rate of inserting a ground target into a given scheme | 0.4 |
crossRate | The rate of the number of ground targets/tasks needed to be swapped to the number of scheduled ground targets/tasks | 0.1 |
| The score an operator will be added when the new solution generated by the operator dominates all current solutions | 30 |
| The score an operator will be added when the new solution generated by the operator dominates one of the current non-dominated solutions | 20 |
| The score an operator will be added when the new solution is generated by the operator in the current Pareto frontier | 10 |
| The score an operator will be added when the new solution generated by the operator is dominated by one of the current non-dominated solutions | 0 |
| The value of the reaction factor to control how sensitive the weights are to changes in the performance of operators | 0.5 |
Table 2
Comparing results"
Scenario | RGHA | G | ALNS | |||||||
| | | | | | | | |||
WD-50 | 1.0000 | 0.0007 | 100 | 50 | 1.0000 | 1.0000 | 1.0000 | 0.0014 | ||
WD-100 | 0.9978 | 0.0011 | 100 | 1.08 | 0.9978 | 0.9978 | 0.9978 | 0.1018 | ||
WD-150 | 0.9985 | 0.0034 | 100 | 1.48 | 0.9985 | 0.9985 | 0.9985 | 0.2290 | ||
WD-200 | 0.9865 | 0.0031 | 99 | 1.20 | 0.9955 | 0.9955 | 0.9955 | 0.2585 | ||
WD-250 | 0.9748 | 0.0053 | 99 | 1.39 | 0.9820 | 0.9820 | 0.9820 | 0.3808 | ||
WD-300 | 0.9571 | 0.0078 | 99 | 1.46 | 0.9707 | 0.9707 | 0.9707 | 0.5356 | ||
WD-350 | 0.9542 | 0.0114 | 98 | 1.66 | 0.9697 | 0.9697 | 0.9697 | 0.6866 | ||
WD-400 | 0.9378 | 0.0152 | 98 | 1.77 | 0.9561 | 0.9561 | 0.9561 | 0.8595 | ||
WD-450 | 0.9087 | 0.02 | 96 | 1.68 | 0.9412 | 0.9423 | 0.9427 | 1.1898 | ||
WD-500 | 0.886 | 0.0258 | 96 | 1.96 | 0.9265 | 0.9273 | 0.9278 | 1.3140 | ||
WD-550 | 0.8755 | 0.0297 | 95 | 1.34 | 0.9228 | 0.9239 | 0.9248 | 2.2106 | ||
WD-600 | 0.8597 | 0.0362 | 94 | 1.65 | 0.9100 | 0.9107 | 0.9115 | 2.1887 |
Table 3
Comparing results among CTC, CSEO and KSOA"
Scenario | CTC | CSEO | KSOA | |||||||||||||||||
| | | | | | | | | | | | | | | | | | |||
CD-50 | 0.2763 | 0.5746 | 0.9653 | 0.0015 | 0.0370 | 0.0786 | 0.6132 | 0.7716 | 0.9632 | 0.0011 | 0.0508 | 0.1001 | 0.2617 | 0.6005 | 0.9831 | 0.0015 | 0.2013 | 0.5258 | ||
CD-75 | 0.3827 | 0.6538 | 0.9760 | 0.0015 | 0.0374 | 0.0788 | 0.7262 | 0.8198 | 0.9747 | 0.0010 | 0.0512 | 0.0876 | 0.4482 | 0.7315 | 0.9845 | 0.0014 | 0.1504 | 0.4956 | ||
CD-100 | 0.4500 | 0.7162 | 0.9712 | 0.0029 | 0.0376 | 0.0807 | 0.7857 | 0.8738 | 0.9804 | 0.0008 | 0.0379 | 0.0744 | 0.4853 | 0.7516 | 0.9804 | 0.0013 | 0.3653 | 0.7486 | ||
CD-125 | 0.5793 | 0.7811 | 0.9867 | 0.0013 | 0.0307 | 0.0643 | 0.8042 | 0.8969 | 0.9843 | 0.0007 | 0.0325 | 0.0730 | 0.5518 | 0.7619 | 0.9843 | 0.0012 | 0.3651 | 0.7039 | ||
CD-150 | 0.5499 | 0.7669 | 0.9845 | 0.0023 | 0.0401 | 0.0846 | 0.8464 | 0.9144 | 0.9875 | 0.0006 | 0.0304 | 0.0631 | 0.5864 | 0.7923 | 0.9875 | 0.0011 | 0.3575 | 0.6531 | ||
CD-175 | 0.6318 | 0.8171 | 0.9817 | 0.0024 | 0.0348 | 0.0722 | 0.8747 | 0.9290 | 0.9897 | 0.0005 | 0.0272 | 0.0523 | 0.6103 | 0.8120 | 0.9892 | 0.0020 | 0.3736 | 0.6225 | ||
CD-200 | 0.6657 | 0.8448 | 0.9910 | 0.0010 | 0.0309 | 0.0748 | 0.8723 | 0.9273 | 0.9910 | 0.0005 | 0.0292 | 0.0576 | 0.6945 | 0.8553 | 0.9931 | 0.0010 | 0.3440 | 0.5764 | ||
CD-225 | 0.6964 | 0.8455 | 0.9966 | 0.0009 | 0.0350 | 0.0710 | 0.8892 | 0.9358 | 0.9930 | 0.0004 | 0.0279 | 0.0524 | 0.7110 | 0.8603 | 0.9933 | 0.0010 | 0.3234 | 0.5498 | ||
CD-250 | 0.7352 | 0.8845 | 0.9941 | 0.0009 | 0.0298 | 0.0685 | 0.9160 | 0.9568 | 0.9932 | 0.0004 | 0.0190 | 0.0427 | 0.7221 | 0.8657 | 0.9934 | 0.0011 | 0.2970 | 0.5740 | ||
CD-275 | 0.7329 | 0.8651 | 0.9936 | 0.0008 | 0.0346 | 0.0714 | 0.9157 | 0.9515 | 0.9936 | 0.0004 | 0.0215 | 0.0395 | 0.7498 | 0.8771 | 0.9968 | 0.0008 | 0.2814 | 0.4960 | ||
CD-300 | 0.7451 | 0.8860 | 0.9964 | 0.0009 | 0.0297 | 0.0694 | 0.9254 | 0.9649 | 0.9948 | 0.0003 | 0.0164 | 0.0416 | 0.7515 | 0.8760 | 0.9894 | 0.0020 | 0.3007 | 0.5185 | ||
CD-325 | 0.7683 | 0.8882 | 0.9958 | 0.0008 | 0.0309 | 0.0676 | 0.9340 | 0.9665 | 0.9949 | 0.0003 | 0.0151 | 0.0343 | 0.7559 | 0.8823 | 0.9927 | 0.0020 | 0.3099 | 0.4961 | ||
CD-350 | 0.7929 | 0.8956 | 0.9964 | 0.0007 | 0.0290 | 0.0606 | 0.9312 | 0.9639 | 0.9955 | 0.0003 | 0.0169 | 0.0362 | 0.7795 | 0.8866 | 0.9920 | 0.0019 | 0.3048 | 0.4716 | ||
CD-375 | 0.8020 | 0.8973 | 0.9971 | 0.0007 | 0.0302 | 0.0584 | 0.9352 | 0.9652 | 0.9958 | 0.0003 | 0.0171 | 0.0338 | 0.7908 | 0.8867 | 0.9956 | 0.0007 | 0.3041 | 0.4524 | ||
CD-400 | 0.7995 | 0.8992 | 0.9957 | 0.0007 | 0.0294 | 0.0646 | 0.9356 | 0.9614 | 0.9957 | 0.0003 | 0.0190 | 0.0362 | 0.8185 | 0.9178 | 0.9957 | 0.0007 | 0.2362 | 0.4006 |
1 |
MCELROY J Observation of the Earth and its environment: survey of missions and sensors, third edition. EOS Transactions, 1996, 77 (31): 292.
doi: 10.1029/96EO00211 |
2 |
CHANG Z X, CHEN Y N, YANG W Y, et al Mission planning problem for optical video satellite imaging with variable image duration: a greedy algorithm based on heuristic knowledge. Advances in Space Research, 2020, 66 (11): 2597- 2609.
doi: 10.1016/j.asr.2020.09.002 |
3 | WU G H, LIU J, MA M H, et al A two-phase scheduling method with the consideration of task clustering for earth observing satellites. Computers & Operations Research, 2013, 40 (7): 1884- 1894. |
4 | LIU X L, LAPORTE G, CHEN Y W, et al An adaptive large neighborhood search metaheuristic for agile satellite scheduling with time-dependent transition time. Computers & Operations Research, 2017, 86, 41- 53. |
5 | YANG W Y, CHEN Y N, HE R J, et al. The bi-objective active-scan agile Earth observation satellite scheduling problem: modeling and solution approach. Proc. of the IEEE Congress on Evolutionary Computation, 2018: 1–6. |
6 |
LEMAITRE M, VERFAILLIE G, JOUHAUD F, et al Selecting and scheduling observations of agile satellites. Aerospace Science and Technology, 2002, 6 (5): 367- 381.
doi: 10.1016/S1270-9638(02)01173-2 |
7 |
WANG J J, DEMEULEMEESTER E, HU X J, et al Exact and heuristic scheduling algorithms for multiple Earth observation satellites under uncertainties of clouds. IEEE Systems Journal, 2019, 13 (3): 3556- 3567.
doi: 10.1109/JSYST.2018.2874223 |
8 |
WU K, ZHANG D X, CHEN Z H, et al Multi-type multi-objective imaging scheduling method based on improved NSGA-III for satellite formation system. Advances in Space Research, 2019, 63 (8): 2551- 2565.
doi: 10.1016/j.asr.2019.01.006 |
9 |
XU R, CHEN H P, LIANG X L, et al Priority-based constructive algorithms for scheduling agile earth observation satellites with total priority maximization. Expert Systems with Applications, 2016, 51, 195- 206.
doi: 10.1016/j.eswa.2015.12.039 |
10 | LIU S K, YANG J. A satellite task planning algorithm based on a symmetric recurrent neural network. Symmetry, 2019. DOI: 10.3390/sym1111373. |
11 |
WANG J J, ZHU X M, YANG L T, et al Towards dynamic real-time scheduling for multiple earth observation satellites. Journal of Computer and System Sciences, 2015, 81 (1): 110- 124.
doi: 10.1016/j.jcss.2014.06.016 |
12 | BERGER J, LO N, BARKAOUI M. QUEST – a new quadratic decision model for the multi-satellite scheduling problem. Computers & Operations Research, 2020. DOI: 10.1016/j.cor.2019.104822. |
13 |
NIU X N, TANG H, WU L X Satellite scheduling of large areal tasks for rapid response to natural disaster using a multi-objective genetic algorithm. International Journal of Disaster Risk Reduction, 2018, 28, 813- 825.
doi: 10.1016/j.ijdrr.2018.02.013 |
14 | WU G H, WANG H L, PEDRYCZ W, et al Satellite observation scheduling with a novel adaptive simulated annealing algorithm and a dynamic task clustering strategy. Computers & Industrial Engineering, 2017, 113, 576- 588. |
15 | LONG X Y, WU S F, WU X F, et al. A GA-SA hybrid planning algorithm combined with improved clustering for LEO observation satellite missions. Algorithms, 2019. DOI: 10.3390/a12110231. |
16 | LONG J, CHEN S L, LI C. A task clustering method for multi agile satellite based on clique partition. Proc. of the 11th International Conference on Intelligent Computation Technology and Automation, 2018, 1: 332−336. |
17 | WANG S, JIN R, ZHU J D SuperView-1—China’s first commercial remote sensing satellite constellation with a high resolution of 0.5 m. Aerospace China, 2018, 19 (1): 30- 38. |
18 |
HUANG W, SUN S R, JIANG H B, et al GF-2 satellite 1m/4m camera design and in-orbit commissioning. Chinese Journal of Electronics, 2018, 27 (6): 1316- 1321.
doi: 10.1049/cje.2018.09.018 |
19 |
WANG S, ZHAO L, CHENG J H, et al Task scheduling and attitude planning for agile earth observation satellite with intensive tasks. Aerospace Science and Technology, 2019, 90, 23- 33.
doi: 10.1016/j.ast.2019.04.007 |
20 | PENG G S, DEWIL R, VERBEECK C, et al Agile earth observation satellite scheduling: an orienteering problem with time-dependent profits and travel times. Computers & Operations Research, 2019, 111, 84- 98. |
21 |
ZHAO L, WANG S, HAO Y, et al Energy-dependent mission planning for agile Earth observation satellite. Journal of Aerospace Engineering, 2019, 32 (1): 04018118.
doi: 10.1061/(ASCE)AS.1943-5525.0000949 |
22 | PENG G S, SONG G P, XING L N, et al An exact algorithm for agile Earth observation satellite scheduling with time-dependent profits. Computers & Operations Research, 2020, 120, 104946. |
23 | HE L, LIU X L, LAPORTE G, et al An improved adaptive large neighborhood search algorithm for multiple agile satellites scheduling. Computers & Operations Research, 2018, 100, 12- 25. |
24 |
HE L, DE WEERDT M, YORKE-SMITH N Time/sequence-dependent scheduling: the design and evaluation of a general purpose tabu-based adaptive large neighbourhood search algorithm. Journal of Intelligent Manufacturing, 2019, 31, 1051- 1078.
doi: 10.1007/s10845-019-01518-4 |
25 |
XU Y J, LIU X L, HE R J, et al Multi-satellite scheduling framework and algorithm for very large area observation. Acta Astronautica, 2020, 167, 93- 107.
doi: 10.1016/j.actaastro.2019.10.041 |
26 | WANG X W, CHEN Z, HAN C Scheduling for single agile satellite, redundant targets problem using complex networks theory. Chaos, Solitons & Fractals, 2016, 83, 125- 132. |
27 | KIDD M P, LUSBY R, LARSEN J Equidistant representations: connecting coverage and uniformity in discrete biobjective optimization. Computers & Operations Research, 2020, 117, 104872. |
28 |
DEB K, PRATAP A, AGARWAL S, et al A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation, 2002, 6 (2): 182- 197.
doi: 10.1109/4235.996017 |
29 | SRINIVAS N, DEB K Multi-objective function optimization using nondominated sorting genetic algorithms. Evolutionary Computation, 1995, 2 (3): 221- 248. |
30 | GONG M G, JIAO L C, YANG D D, et al Research on evolutionary multi-objective optimization algorithms. Journal of Software, 2009, 4 (2): 271- 289. |
31 |
HAMACHER H W, PEDERSEN C R, et al Finding representative systems for discrete bicriterion optimization problems. Operations Research Letters, 2007, 35 (3): 336- 344.
doi: 10.1016/j.orl.2006.03.019 |
32 |
ZHANG Q F, LI H MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. on Evolutionary Computation, 2007, 11 (6): 712- 731.
doi: 10.1109/TEVC.2007.892759 |
33 | CORNE D, KNOWLES J. Techniques for highly multiobjective optimisation: some nondominated points are better than others. Proc. of the Genetic and Evolutionary Computation Conference, 2007: 773–780. |
34 |
PURSHOUSE R C, FLEMING P J On the evolutionary optimization of many conflicting objectives. IEEE Trans. on Evolutionary Computation, 2007, 11 (6): 770- 784.
doi: 10.1109/TEVC.2007.910138 |
35 |
WANG R, PURSHOUSE R C, FLEMING P J Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Trans. on Evolutionary Computation, 2013, 17 (4): 474- 494.
doi: 10.1109/TEVC.2012.2204264 |
36 |
BRADSTREET L, WHILE L & BARONE L A fast incremental hypervolume algorithm. IEEE Trans. on Evolutionary Computation, 2008, 12 (6): 714- 723.
doi: 10.1109/TEVC.2008.919001 |
37 |
DURILLO J J, NEBRO A J jMetal: A Java framework for multi-objective optimization. Advances in Engineering Software, 2011, 42 (10): 760- 771.
doi: 10.1016/j.advengsoft.2011.05.014 |
[1] | Junhua YAN, Xuehan BAI, Wanyi ZHANG, Yongqi XIAO, Chris CHATWIN, Rupert YOUNG, Phil BIRCH. No-reference image quality assessment based on AdaBoost BP neural network in wavelet domain [J]. Journal of Systems Engineering and Electronics, 2019, 30(2): 223-237. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||