1 |
ALI H S. Fundamentals of adaptive filtering. New York: John Wiley & Sons, 2003.
|
2 |
KONG A L, WOON S G, SEN M K. Subband adaptive filtering: theory and implementation. New York: John Wiley & Sons, 2009.
|
3 |
KONG A L, WOON S G Improving convergence of the NLMS algorithm using constrained subband updates. IEEE Signal Processing Letters, 2004, 11 (9): 736- 739.
doi: 10.1109/LSP.2004.833445
|
4 |
WILLIAM F S Advanced television systems for terrestrial broadcasting: some problems and some proposed solutions. Proceedings of the IEEE, 1995, 83 (6): 958- 981.
doi: 10.1109/5.387095
|
5 |
DONALD L D Proportionate normalized least-mean-squares adaptation in echo cancellers. IEEE Trans. on Speech and Audio Processing, 2000, 8 (5): 508- 518.
doi: 10.1109/89.861368
|
6 |
YU Y, ZHAO H Q, CHEN B D Set-membership improved normalized subband adaptive filter algorithms for acoustic echo cancellation. IET Signal Processing, 2017, 12 (1): 42- 50.
|
7 |
MOHAMMAD S E A, SIMA K A family of proportionate normalized subband adaptive filter algorithms. Journal of the Franklin Institute, 2011, 348 (2): 212- 238.
doi: 10.1016/j.jfranklin.2010.11.003
|
8 |
NI J, LI F Variable regularization parameter sign subband adaptive filter. Electronics Letters, 2010, 46 (24): 1605- 1607.
doi: 10.1049/el.2010.2406
|
9 |
SHEN Z J, YU Y, HUANG T M Two novel arctangent normalized subband adaptive filter algorithms against impulsive interferences. Circuits, Systems, and Signal Processing, 2018, 37 (2): 883- 900.
doi: 10.1007/s00034-017-0583-9
|
10 |
YU Y, ZHAO H Q, CHEN B D, et al Two improved normalized subband adaptive filter algorithms with good robustness against impulsive interferences. Circuits, Systems, and Signal Processing, 2016, 35 (12): 4607- 4619.
doi: 10.1007/s00034-016-0289-4
|
11 |
SHIN J W, YOO J W, PARK P G Variable step-size sign subband adaptive filter. IEEE Signal Processing Letters, 2013, 20 (2): 173- 176.
doi: 10.1109/LSP.2012.2237166
|
12 |
WEN P W, ZHANG J S Robust variable step-size sign subband adaptive filter algorithm against impulsive interferences. Signal Processing, 2017, 139, 110- 115.
doi: 10.1016/j.sigpro.2017.04.012
|
13 |
SHI L, ZHAO H Q An improved variable regularization parameter for sign subband adaptive filter. Circuits, Systems, and Signal Processing, 2019, 38, 1396- 1411.
doi: 10.1007/s00034-018-0908-3
|
14 |
KIM J H, CHANG J H, NAM S W Sign subband adaptive filter with l1-norm minimization-based variable step-size . Electronics Letters, 2013, 49 (21): 1325- 1326.
doi: 10.1049/el.2013.2011
|
15 |
LIU Q Q, ZHAO H Q Robust novel affine projection sign subband adaptive filter algorithm. Circuits, Systems, and Signal Processing, 2019, 38, 4141- 4161.
doi: 10.1007/s00034-018-0985-3
|
16 |
YU Y, ZHAO H Q Novel sign subband adaptive filter algorithms with individual weighting factors. Signal Processing, 2016, 122, 14- 23.
doi: 10.1016/j.sigpro.2015.11.007
|
17 |
WEN P W, ZHANG S, ZHANG J S A novel subband adaptive filter algorithm against impulsive interferences and its performance analysis. Signal Processing, 2016, 127, 282- 287.
doi: 10.1016/j.sigpro.2016.03.006
|
18 |
YU Y, ZHAO H Q Proportionate NSAF algorithms with sparseness-measured for acoustic echo cancellation. AEU-International Journal of Electronics and Communications, 2017, 75, 53- 62.
doi: 10.1016/j.aeue.2017.03.009
|
19 |
YU Y, ZHAO H Q, CHEN B D Sparse normalized subband adaptive filter algorithm with l0-norm constraint . Journal of the Franklin Institute, 2016, 353 (18): 5121- 5136.
doi: 10.1016/j.jfranklin.2016.09.022
|
20 |
CHOI Y S Subband adaptive filtering with l1-norm constraint for sparse system identification . Mathematical Problems in Engineering, 2013, 2013, 601623.
doi: 10.1155/2013/601623
|
21 |
NI J G, CHEN X P, YANG J Two variants of the sign subband adaptive filter with improved convergence speed. Signal Processing, 2014, 96, 325- 331.
doi: 10.1016/j.sigpro.2013.09.022
|
22 |
CHOI Y S A new subband adaptive filtering algorithm for sparse system identification with impulsive interferences. Journal of Applied Mathematics, 2014, 2014, 704231.
|
23 |
SHEN Z J, HUANG T M, ZHOU K L0-norm constraint normalized logarithmic subband adaptive filter algorithm . Signal, Image and Video Processing, 2018, 12 (5): 861- 868.
doi: 10.1007/s11760-017-1230-4
|
24 |
JIANG S Y, GU Y T Block-sparsity-induced adaptive filter for multi-clustering system identification. IEEE Trans. on Signal Processing, 2015, 63 (20): 5318- 5330.
doi: 10.1109/TSP.2015.2453133
|
25 |
YAN Z H, YANG F R, YANG J Block sparse reweighted zero-attracting normalized least mean square algorithm for system identification. Electronics Letters, 2017, 53 (14): 899- 900.
doi: 10.1049/el.2017.1115
|
26 |
LIU J M, GRANT S L Proportionate adaptive filtering for block-sparse system identification. IEEE/ACM Trans. on Audio, Speech, and Language Processing, 2016, 24 (4): 623- 627.
doi: 10.1109/TASLP.2015.2499602
|
27 |
WANG W Y, ZHAO H Q Block-sparse non-uniform norm constraint normalized subband adaptive filter. IET Signal Processing, 2018, 13 (1): 96- 102.
|
28 |
WEI Y, ZHANG Y G, WANG C C Block-sparsity-aware LMS algorithm for network echo cancellation. Electronics Letters, 2018, 54 (15): 951- 953.
doi: 10.1049/el.2018.1065
|
29 |
ZAYYANI H Continuous mixed p-norm adaptive algorithm for system identification . IEEE Signal Processing Letters, 2014, 21 (9): 1108- 1110.
doi: 10.1109/LSP.2014.2325495
|
30 |
SHI L, ZHAO H Q, AKHAROV Y Generalized variable step size continuous mixed p-norm adaptive filtering algorithm . IEEE Trans. on Circuits and Systems II: Express Briefs, 2018, 66 (6): 1078- 1082.
|
31 |
LEE H S, YIM S H, SONG W J z2-proportionate diffusion LMS algorithm with mean square performance analysis . Signal Processing, 2017, 131, 154- 160.
doi: 10.1016/j.sigpro.2016.06.011
|
32 |
PRICE R A useful theorem for nonlinear devices having Gaussian inputs. IRE Trans. on Information Theory, 1958, 4 (2): 69- 72.
doi: 10.1109/TIT.1958.1057444
|
33 |
MALVAR H S. Signal processing with lapped transforms. Norwood: Artech House, 1992.
|