Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (4): 731-747.doi: 10.23919/JSEE.2021.000063
• SENSOR ARRAY SIGNAL PROCESSING AND ITS APPLICATIONS IN 5G/6G • Next Articles
Zhiming LIU1,2(), Jens BORNEMANN1,*(), Shaobin LIU2(), Xiangkun KONG2()
Received:
2020-12-31
Online:
2021-08-18
Published:
2021-09-30
Contact:
Jens BORNEMANN
E-mail:lzmedu@foxmail.com;j.bornemann@ieee.org;lsb@nuaa.edu.cn;xkkong@nuaa.edu.cn
About author:
Supported by:
Zhiming LIU, Jens BORNEMANN, Shaobin LIU, Xiangkun KONG. Investigations and prospects of Fabry-Perot antennas: a review[J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 731-747.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Comparison of the existing works"
Reference | Feature | 10 dB impedance bandwidth | Relative 3 dB gain bandwidth/% | Max. Gain (dBi/dBic) | GBP | Height | PRS technology |
[ | Low-profile | 3.7 GHz | ? | 14.81 | ? | 0.05λ | One-layer PRS |
[ | Low-profile | 9.35 GHz | ? | 13.5 | ? | 0.10λ | Substrate-integrated |
[ | Low-profile | 10.5 GHz | ? | 15.0 | ? | 0.30λ | Substrate-integrated |
[ | Low-profile | 9.95 GHz | ? | 12.5 | ? | 0.11λ | Substrate- integrated+AMC |
[ | Low-profile | 9.8 GHz | ? | 13.5 | ? | 0.12λ | PRS-AMC |
[ | Wideband | Around 5% | 15.1 | 19.5 | 1346 | 1.41λ | Three-layer FSS |
[ | Wideband | 8.6?11.2 (26.2%) | 28 | 13.8 | 672 | 0.51λ | One-layer FSS |
[ | Wideband | Around 7.1% | 6 | 17.44 | 333 | 0.95λ | Two-layer FSS |
[ | Wideband | Around 25% | 15.7 | 16.2 | 654 | 0.54λ | One-layer FSS |
[ | Wideband | ? | 54.2 | 16.4 | 2366 | 1.01λ | TPG all-dielectric |
[ | Wideband | 10?18.4 (59.2%) | 57 | 20.2 | 5969 | 0.9λ | TPG all-dielectric |
[ | Wideband | 5.8?16 (93.6%) | 86.3 | 14.2 | 2270 | 1.31λ | Truncated three- layer dielectric |
[ | Dual-band | 2.42?2.6 (7.2%) 5.2?5.8 (10.9%) | 7 11 | 14.9 14.2 | 216 289 | 0.45λ 1.0λ | Two-layer FSS |
[ | Tri-band | 5.1?5.5 (7.5%) 9.6?10.2 (6.1%) 14.4?16.0 (10.5%) | ? ? ? | 13.4 18.9 20 | ? ? ? | 0.36λ 0.68λ 1.04λ | Two-layer FSS |
[ | Circular polarization | 6.8?11.2 (48.9%) | 50.3 | 14 | 1263 | 0.53λ | One-layer FSS |
[ | Frequency reconfigurable | 4.55?4.7 (3.3%) 5.37?5.63 (4.7%) | 11.9 8.2 | 13.1 17.1 | 243 421 | 0.42λ 0.50λ | One-layer reconfigurable PRS |
[ | Radiation pattern reconfigurable | 5.5 GHz | ? | 10.4 | ? | 0.46λ | One-layer FSS with PIN diodes |
[ | Wideband+polarization reconfigurable | 2.2?2.72 (21%) | 14.6 | 15.1 | 472 | 0.5λ | One-layer FSS |
[ | Polarization reconfigurable | 10.3?11.22 (8.6%) | 7.1 | 12.5 | 126 | 0.53λ | PCM |
[ | Circular polarization+ Low-RCS | 10.5?10.78 (2.6%) | ? | 10.2 | ? | 0.43λ | One-layer PRS +AS |
[ | Wideband+Low-RCS | 8.64?12.07 (33.1%) | 25.4 | 17.08 | 1297 | 0.68λ | One-layer FSS |
[ | Wideband + Low-RCS | 8.48?12.21 (36.1%) | 25.5 | 17.2 | 1338 | 0.73λ | One-layer embedded CPCM |
1 |
HOFSTETTER D, THORNTON R L Measurement of optical cavity properties in semiconductor lasers by Fourier analysis of the emission spectrum. IEEE Journal of Quantum Electronics, 1998, 34 (10): 1914- 1923.
doi: 10.1109/3.720227 |
2 |
WU B L, WANG M G, DONG Y, et al Magnetic field sensor based on a dual-frequency optoelectronic oscillator using cascaded magnetostrictive alloy-fiber Bragg grating-Fabry Perot and fiber Bragg grating-Fabry Perot filters. Optics express, 2018, 26 (21): 27628- 27638.
doi: 10.1364/OE.26.027628 |
3 |
LI Y, ZHANG Y J, CHEN H W Tunable self-injected Fabry-Perot laser diode coupled to an external high-Q Si3N4/SiO2 microring resonator. Journal of Lightwave Technology, 2018, 36 (16): 3269- 3274.
doi: 10.1109/JLT.2018.2838325 |
4 | BRAGINSKY V B, VYATCHANIN S P Low quantum noise tranquilizer for Fabry-Perot interferometer. Physics Letters A, 2002, 293 (5/6): 228- 234. |
5 | LI Z G, TIAN J J, JIAO Y Z, et al Simultaneous measurement of air pressure and temperature using fiber-optic cascaded Fabry-Perot interferometer. IEEE Photonics Journal, 2018, 11 (1): 1- 10. |
6 |
VON TRENTINI G Partially reflecting sheet arrays. IRE Trans. on Antennas and Propagation, 1956, 4 (4): 666- 671.
doi: 10.1109/TAP.1956.1144455 |
7 | MUHAMMAD S A, SAULEAU R, VALERIO G, et al Self-polarizing Fabry-Perot antennas based on polarization twisting element. IEEE Trans. on Antennas and Propagation, 2012, 61 (3): 1032- 1040. |
8 |
KONSTANTINIDIS K, FERESIDIS A P, HALL P S Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas. IEEE Trans. on Antennas and Propagation, 2014, 62 (7): 3474- 3481.
doi: 10.1109/TAP.2014.2320755 |
9 |
WANG N Z, LIU Q, WU C Y, et al Wideband Fabry-Perot resonator antenna with two complementary FSS layers. IEEE Trans. on Antennas and Propagation, 2014, 62 (5): 2463- 2471.
doi: 10.1109/TAP.2014.2308533 |
10 |
ZEB B A, GE Y, ESSELLE K P, et al A simple dual-band electromagnetic band gap resonator antenna based on inverted reflection phase gradient. IEEE Trans. on Antennas and Propagation, 2012, 60 (10): 4522- 4529.
doi: 10.1109/TAP.2012.2207331 |
11 |
KELLY J R, KOKKINOS T, FERESIDIS A P Analysis and design of sub-wavelength resonant cavity type 2-D leaky-wave antennas. IEEE Trans. on Antennas and Propagation, 2008, 56 (9): 2817- 2825.
doi: 10.1109/TAP.2008.928791 |
12 |
JI L Y, GUO Y J, QIN P Y, et al A reconfigurable partially reflective surface (PRS) antenna for beam steering. IEEE Trans. on Antennas and Propagation, 2015, 63 (6): 2387- 2395.
doi: 10.1109/TAP.2015.2412143 |
13 | HASHMI R M, ESSELLE K P A class of extremely wideband resonant cavity antennas with large directivity-bandwidth products. IEEE Trans. on Antennas and Propagation, 2015, 64 (2): 830- 835. |
14 |
GARDELLI R, ALBANI M, CAPOLINO F Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement. IEEE Trans. on Antennas and Propagation, 2006, 54 (7): 1979- 1990.
doi: 10.1109/TAP.2006.877172 |
15 |
LIU Z M, LIU S B, BIAN B R, et al Metasurface-based low-profile high-gain substrate-integrated Fabry-Perot cavity antenna. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29 (4): e21583.
doi: 10.1002/mmce.21583 |
16 |
MATEOSEGURA C, FERESIDIS A P, GOUSSETIS G Bandwidth enhancement of 2-D leaky-wave antennas with double-layer periodic surfaces. IEEE Trans. on Antennas and Propagation, 2014, 62 (2): 586- 593.
doi: 10.1109/TAP.2013.2292076 |
17 |
LEE Y J, YEO J, KO K D, et al A novel design technique for control of defect frequencies of an electromagnetic bandgap (EBG) superstrate for dual-band directivity enhancement. Microwave and Optical Technology Letters, 2004, 42 (1): 25- 31.
doi: 10.1002/mop.20196 |
18 |
QIN F, GAO S, WEI G, et al Wideband circularly polarized Fabry-Perot antenna. IEEE Antennas and Propagation Magazine, 2015, 57 (5): 127- 135.
doi: 10.1109/MAP.2015.2470678 |
19 | LIU Z M, LIU S B, BORNEMANN J, et al. A wideband fabry-perot antenna with enhanced gain in the high frequency operating band by adopting a truncated field correcting structure. IEEE Trans. on Antennas and Propagation, 2021. DOI: 10.1109/TAP.2021.3090841. |
20 |
LIAN R N, TANG Z Y, YIN Y Z Design of a broadband polarization reconfigurable Fabry-Perot resonator antenna. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (1): 122- 125.
doi: 10.1109/LAWP.2017.2777502 |
21 |
GUZMAN-QUIROS R, WEILY A R, GOMEZ-TORNERO J L, et al A Fabry-Perot antenna with two-dimensional electronic beam scanning. IEEE Trans. on Antennas and Propagation, 2016, 64 (4): 1536- 1541.
doi: 10.1109/TAP.2016.2525832 |
22 |
XIE P, WANG G M, LI H P, et al A dual-polarized two-dimensional beam steering Fabry-Perot cavity antenna with a reconfigurable partially reflecting surface. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 2370- 2374.
doi: 10.1109/LAWP.2017.2718567 |
23 |
HUANG C, PAN W B, MA X L, et al A frequency reconfigurable directive antenna with wideband low-RCS property. IEEE Trans. on Antennas and Propagation, 2016, 64 (3): 1173- 1178.
doi: 10.1109/TAP.2016.2518199 |
24 |
AKALIN T, DANGLOT J, VANBESIEN O, et al A highly directive dipole antenna embedded in a Fabry-Perot type cavity. IEEE Microwave and Wireless Components Letters, 2002, 12 (2): 48- 50.
doi: 10.1109/7260.982873 |
25 |
GE Y H, SUN Z, CHEN Z G, et al A high-gain wideband low-profile Fabry-Perot resonator antenna with a conical short horn. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 1889- 1892.
doi: 10.1109/LAWP.2016.2542277 |
26 | MENG F, SHARMA S K A wideband resonant cavity antenna with compact partially reflective surface. IEEE Trans. on Antennas and Propagation, 2019, 68 (2): 1155- 1160. |
27 | OLINER A A, JACKSON D R, VOLAKIS J L. Antenna engineering handbook. New York: McGrawHill, 2007. |
28 |
SENGUPTA S, JACKSON D R, LONG S A Modal analysis and propagation characteristics of leaky waves on a 2-D periodic leaky-wave antenna. IEEE Trans. on Microwave Theory and Techniques, 2018, 66 (3): 1181- 1191.
doi: 10.1109/TMTT.2017.2783373 |
29 |
ALMUTAWA A T, HOSSEINI A, JACKSON D R, et al Leaky-wave analysis of wideband planar Fabry-Perot cavity antennas formed by a thick PRS. IEEE Trans. on Antennas and Propagation, 2019, 67 (8): 5163- 5175.
doi: 10.1109/TAP.2019.2911349 |
30 |
ZHOU L, DUAN X, LUO Z J, et al High directivity Fabry-Perot antenna with a nonuniform partially reflective surface and a phase correcting structure. IEEE Trans. on Antennas and Propagation, 2020, 68 (11): 7601- 7606.
doi: 10.1109/TAP.2020.2982514 |
31 | JACKSON D, ALEXOPOULOS N Gain enhancement methods for printed circuit antennas. IEEE Trans. on Antennas and Propagation, 1985, 33 (9): 976987. |
32 |
YANG H Y, ALEXOPOULOS N G Gain enhancement methods for printed circuit antennas through multiple superstrates. IEEE Trans. on Antennas and Propagation, 1987, 35 (7): 860- 863.
doi: 10.1109/TAP.1987.1144186 |
33 |
ZHAO T, JACKSON D R, WILLIAMS J T, et al General formulas for 2-D leaky-wave antennas. IEEE Trans. on Antennas and Propagation, 2005, 53 (11): 3525- 3533.
doi: 10.1109/TAP.2005.856315 |
34 |
BOUTAYEB H, DENIDNI T A Internally excited Fabry-Perot type cavity: power normalization and directivity evaluation. IEEE Antennas and Wireless Propagation Letters, 2006, 5, 159- 162.
doi: 10.1109/LAWP.2006.873944 |
35 |
GOUDARZI A, HONARI M M, MIRZAVAND R Resonant cavity antennas for 5G communication systems: a review. Electronics, 2020, 9 (7): 1080.
doi: 10.3390/electronics9071080 |
36 | ZHOU L, LI H Q, QIN Y Q, et al. Directive emissions from subwavelength metamaterial-based cavities. Proc. of the IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, 2005. DOI: 10.1109/IWAT.2005.1461045. |
37 |
WANG S, FERESIDIS A P, GOUSSETIS G, et al High-gain subwavelength resonant cavity antenna based on metamaterial ground planes. IEE Proceedings—Microwaves, Antennas and Propagation, 2006, 153 (1): 1- 6.
doi: 10.1049/ip-map:20050090 |
38 | COSTA F, MONORCHIO A, MANARA G. Low-profile tunable and steerable Fabry-Perot antenna for software defined radio application. Proc. of the IEEE Antennas and Propagation Society International Symposium, 2010: 1–4. |
39 | ZHU B, CHEN Z N, FENG Y J. Fully substrate-integrated high-gain thin Fabry-Perot cavity antennas. Proc. of the Asia-Pacific Microwave Conference, 2011: 602–605. |
40 |
SUN Y, CHEN Z N, ZHANG Y, et al Subwavelength substrate-integrated Fabry-Perot cavity antennas using artificial magnetic conductor. IEEE Trans. on Antennas and Propagation, 2012, 60 (1): 30- 35.
doi: 10.1109/TAP.2011.2167902 |
41 | JI L, WANG J D, CHEN W D, et al. Substrate-integrated Fabry-Perot cavity antenna fed by slot-coupled patch array for directivity enhancement. Proc. of the Asia-Pacific Microwave Conference, 2013: 1067–1069. |
42 |
LIU W, CHEN Z N, SEE T S P, et al SIW-slot-fed thin beam-squint-free Fabry-Perot cavity antenna with low backlobe levels. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 552- 554.
doi: 10.1109/LAWP.2014.2311813 |
43 | NGUYEN T K, PARK I Design of a substrate-integrated Fabry-Perot cavity antenna for K-band applications. International Journal of Antennas and Propagation, 2015, 2015, 373801. |
44 | GAO Z D, SU M, TANG B H, et al. Low-profile circularly polarized Fabry-Perot resonator antenna array with substrate integrated waveguide feed network. Proc. of the IEEE International Symposium on Electromagnetic Compatibility, 2017: 1–4. |
45 |
GE Z C, ZHANG W X, LIU Z G, et al Broadband and high-gain printed antennas constructed from Fabry-Perot resonator structure using EBG or FSS cover. Microwave and Optical Technology Letters, 2006, 48 (7): 1272- 1274.
doi: 10.1002/mop.21674 |
46 | FERESIDIS A P, VARDAXOGLOU J C. A broadband high-gain resonant cavity antenna with single feed. Proc. of the First European Conference on Antennas and Propagation, 2006: 1–5. |
47 |
LIU Z G, ZHAN W X, FU D L, et al Broadband Fabry-Perot resonator printed antennas using FSS superstrate with dissimilar size. Microwave and Optical Technology Letters, 2008, 50 (6): 1623- 1627.
doi: 10.1002/mop.23456 |
48 |
WU Z H, ZHANG W X Broadband printed compound air-fed array antennas. IEEE Antennas and Wireless Propagation Letters, 2010, 9, 187- 190.
doi: 10.1109/LAWP.2010.2045470 |
49 |
GE Y, ESSELLE K P, BIRD T S The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas. IEEE Trans. on Antennas and Propagation, 2012, 60 (2): 743- 750.
doi: 10.1109/TAP.2011.2173113 |
50 |
PIRHADI A, BAHRAMI H, NASRI J Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer. IEEE Trans. on Antennas and Propagation, 2012, 60 (4): 2101- 2106.
doi: 10.1109/TAP.2012.2186230 |
51 |
LEGER L, MONEDIERE T, JECKO B Enhancement of gain and radiation bandwidth for a planar 1-D EBG antenna. IEEE Microwave and Wireless Components Letters, 2005, 15 (9): 573- 575.
doi: 10.1109/LMWC.2005.855373 |
52 |
HASHMI R M, ZEB B A, ESSELLE K P Wideband high-gain EBG resonator antennas with small footprints and all-dielectric superstructures. IEEE Trans. on Antennas and Propagation, 2014, 62 (6): 2970- 2977.
doi: 10.1109/TAP.2014.2314534 |
53 |
WU K L, YIN W Y, ZHANG L, et al A wideband EBG resonator antenna with an extremely small footprint area. Microwave and Optical Technology Letters, 2015, 57 (7): 1531- 1535.
doi: 10.1002/mop.29134 |
54 |
BABA A A, HASHMI R M, ESSELLE K P Achieving a large gain-bandwidth product from a compact antenna. IEEE Trans. on Antennas and Propagation, 2017, 65 (7): 3437- 3446.
doi: 10.1109/TAP.2017.2700016 |
55 |
BABA A A, HASHMI R M, ESSELLE K P, et al Compact high-gain antenna with simple all-dielectric partially reflecting surface. IEEE Trans. on Antennas and Propagation, 2018, 66 (8): 4343- 4348.
doi: 10.1109/TAP.2018.2842247 |
56 |
NGUYEN-TRONG N, TRAN H H, NGUYEN T K, et al Wideband Fabry-Perot antennas employing multilayer of closely spaced thin dielectric slabs. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (7): 1354- 1358.
doi: 10.1109/LAWP.2018.2846240 |
57 |
LEE D H, LEE Y J, YEO J, et al Design of novel thin frequency selective surface superstrates for dual-band directivity enhancement. IET Microwaves, Antennas and Propagation, 2007, 1 (1): 248- 254.
doi: 10.1049/iet-map:20050318 |
58 | ZEB B A, GE Y, ESSELLE K P. A single-layer thin partially reflecting surface for tri-band directivity enhancement. Proc. of the Asia-Pacific Microwave Conference, 2012: 559–561. |
59 |
ABDELGHANI M L, ATTIA H, DENIDNI T A Dual- and wideband Fabry-Perot resonator antenna for WLAN applications. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 473- 476.
doi: 10.1109/LAWP.2016.2585087 |
60 |
QIN F, GAO S, LUO Q, et al A triband low-profile high-gain planar antenna using Fabry-Perot cavity. IEEE Trans. on Antennas and Propagation, 2017, 65 (5): 2683- 2688.
doi: 10.1109/TAP.2017.2670564 |
61 |
CHEN J Q, ZHAO Y J, GE Y, et al Dual-band high-gain Fabry-Perot cavity antenna with a shared-aperture FSS layer. IET Microwaves, Antennas and Propagation, 2018, 12 (13): 2007- 2011.
doi: 10.1049/iet-map.2018.5183 |
62 |
QIN F, GAO S S, LUO Q, et al, et al A simple low-cost shared-aperture dual-band dual-polarized high-gain antenna for synthetic aperture radars. IEEE Trans. on Antennas and Propagation, 2016, 64 (7): 2914- 2922.
doi: 10.1109/TAP.2016.2559526 |
63 | XIE P, WANG G M, KONG X X, et al Design of a novel metasurface for dual-band Fabry-Perot cavity antenna. International Journal of RF and Microwave Computer-Aided Engineering, 2017, 28 (2): 1- 7. |
64 | CHEN C, LIU Z G, WANG H, et al. Metamaterial-inspired self-polarizing dual-band dual-orthogonal circularly polarized Fabry-Perot resonator antennas IEEE Trans. on Antennas and Propagation, 2018, 67 (2): 1329- 1334. |
65 |
DENG C J, LI Y, ZHANG Z J, et al A circularly polarized pattern diversity antenna for hemispherical coverage. IEEE Trans. on Antennas and Propagation, 2014, 62 (10): 5365- 5369.
doi: 10.1109/TAP.2014.2342763 |
66 |
WANG A K, YANG L, ZHANG Y, et al A novel planar dual circularly polarized endfire antenna. IEEE Access, 2019, 7, 64297- 64302.
doi: 10.1109/ACCESS.2019.2915996 |
67 |
TRAN H H, TA S X, PARK I Single-feed, wideband, circularly polarized, crossed bowtie dipole antenna for global navigation satellite systems. Journal of Electromagnetic Engineering and Science, 2014, 14 (3): 299- 305.
doi: 10.5515/JKIEES.2014.14.3.299 |
68 |
CHOI E C, LEE J W, LEE T K, et al Circularly polarized S-band satellite antenna with parasitic elements and its arrays. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 1689- 1692.
doi: 10.1109/LAWP.2014.2347998 |
69 | SHI J, WU X, QING X M, et al An omnidirectional circularly polarized antenna array. IEEE Trans. on Antennas and Propagation, 2015, 64 (2): 574- 581. |
70 |
WEILY A R, ESSELLE K P, BIRD T S, et al High gain circularly polarised 1-D EBG resonator antenna. IET Electronics Letters, 2006, 42 (18): 1012- 1013.
doi: 10.1049/el:20061552 |
71 |
LIU Z G, LU W B Broadband design of circularly polarized high-gain Fabry-Perot resonator antenna with simple array thinning technique. Microwave and Optical Technology Letters, 2017, 59 (12): 3171- 3176.
doi: 10.1002/mop.30900 |
72 | TRAN H H, LE T T, BUI C D, et al Broadband circularly polarized Fabry-Perot antenna utilizing Archimedean spiral radiator and multi-layer partially reflecting surface. International Journal of RF and Microwave Computer-Aided Engineering, 2018, 29 (3): 1- 7. |
73 |
CAO W Q, LV X M, WANG Q Q, et al Wideband circularly polarized Fabry-Perot resonator antenna in Ku-band. IEEE Antennas and Wireless Propagation Letters, 2019, 18 (4): 586- 590.
doi: 10.1109/LAWP.2019.2896940 |
74 | TRAN H H, NGUYEN-TRONG N, NGUYEN T K Low-profile wideband Fabry-Perot resonator antenna using artificial magnetic conductor surface. Microwave and Optical Technology Letters, 2018, 61 (2): 316- 322. |
75 |
DIBLANC M, RODES E, ARNAUD E, et al Circularly polarized metallic EBG antenna. IEEE Microwave and Wireless Components Letters, 2005, 15 (10): 638- 640.
doi: 10.1109/LMWC.2005.856689 |
76 |
ORR R, GOUSSETIS G, FUSCO V Design method for circularly polarized Fabry-Perot cavity antennas. IEEE Trans. on Antennas and Propagation, 2014, 62 (1): 19- 26.
doi: 10.1109/TAP.2013.2286839 |
77 | LIU Z G, LU W B Low-profile design of broadband high gain circularly polarized Fabry-Perot resonator antenna and its array with linearly polarized feed. IEEE Access, 2017, 5 (1): 7164- 7172. |
78 |
REN J Y, JIANG W, ZHANG K Z, et al A high-gain circularly polarized Fabry-Perot antenna with wideband low-RCS property. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (5): 853- 856.
doi: 10.1109/LAWP.2018.2820015 |
79 |
WEILY A R, BIRD T S, GUO Y J A reconfigurable high-gain partially reflecting surface antenna. IEEE Trans. on Antennas and Propagation, 2008, 56 (11): 3382- 3390.
doi: 10.1109/TAP.2008.2005538 |
80 |
XIE P, WANG G M Design of a frequency reconfigurable Fabry-Perot cavity antenna with single layer partially reflecting surface. Progress in Electromagnetics Research Letters, 2017, 70, 115- 121.
doi: 10.2528/PIERL17072505 |
81 |
HAO Y, ALOMAINY A H, PARINI C G Antenna-beam shaping from offset defects in UC-EBG cavities. Microwave and Optical Technology Letters, 2004, 43 (2): 108- 112.
doi: 10.1002/mop.20391 |
82 |
DEBOGOVIC T, PERRUISSEAU-CARRIER J Array-fed partially reflective surface antenna with independent scanning and beamwidth dynamic control. IEEE Trans. on Antennas and Propagation, 2014, 62 (1): 446- 449.
doi: 10.1109/TAP.2013.2287018 |
83 | DEBOGOVIC T, PERRUISSEAU-CARRIER J, BARTOLIC J, et al Partially reflective surface antenna with dynamic beamwidth control. IEEE Antennas and Wireless Propagation Letters, 2010, 9 (3): 1157- 1160. |
84 | DEBOGOVIC T, PERRUISSEAU-CARRIER J Dual-polarized beamwidth-reconfigurable Fabry-Perot antenna in monolithic MEMS technology. Proc. of the IEEE Antennas and Propagation Society International Symposium, 2013, 754- 755. |
85 |
JI L Y, ZHANG Z Y, LIU N W A two-dimensional beam-steering partially reflective surface (PRS) antenna using a reconfigurable FSS structure. IEEE Antennas and Wireless Propagation Letters, 2019, 18 (6): 1076- 1080.
doi: 10.1109/LAWP.2019.2907641 |
86 |
SULTAN F, MITU S S I Superstrate-based beam scanning of a Fabry-Perot cavity antenna. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 1187- 1190.
doi: 10.1109/LAWP.2015.2499261 |
87 | LAN J H, SUN B H, YAN W B, et al A beam scanning Fabry-Perot cavity antenna for millimeter-wave applications. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29 (5): 1- 5. |
88 | GUO C L, LIU F F, CHEN S, et al Advances on exploiting polarization in wireless communications: channels, technologies, and applications. IEEE Communications Surveys & Tutorials, 2016, 19 (1): 125- 166. |
89 |
LV X L, WU B, ZHAO Y T, et al Dual-band dual-polarization reconfigurable THz antenna based on graphene. Applied Physics Express, 2020, 13 (7): 075007.
doi: 10.35848/1882-0786/ab9e4b |
90 | JI L Y, QIN P Y, GUO Y J, et al. A wideband polarization reconfigurable antenna for WLAN applications. Proc. of the 10th European Conference on Antennas and Propagation, 2016: 1−3. |
91 | HAN W W, OUYANG J, GUO Z, et al. A single-feed high-gain Fabry-Perot antenna with reconfigurable polarization capability. Proc. of the Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, 2013: 279–281. |
92 |
VAIDYA A R, GUPTA R K, MISHRA S K, et al Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 431- 434.
doi: 10.1109/LAWP.2014.2308926 |
93 |
TRAN H H, PARK H C A simple design of polarization reconfigurable Fabry-Perot resonator antenna. IEEE Access, 2020, 8, 91837- 91842.
doi: 10.1109/ACCESS.2020.2995182 |
94 |
LI W T, GAO S, CAI Y M, et al Polarization-reconfigurable circularly polarized planar antenna using switchable polarizer. IEEE Trans. on Antennas and Propagation, 2017, 65 (9): 4470- 4477.
doi: 10.1109/TAP.2017.2730240 |
95 |
NI C, LIU C Q, ZHANG Z X, et al Design of broadband high gain polarization reconfigurable Fabry-Perot cavity antenna using metasurface. Frontiers in Physics, 2020, 8, 316.
doi: 10.3389/fphy.2020.00316 |
96 |
ZHANG X, CHEN C, JIANG S, et al A high-gain polarization reconfigurable antenna using polarization conversion metasurface. Progress in Electromagnetics Research, 2020, 105, 1- 10.
doi: 10.2528/PIERC20052001 |
97 |
PAN W B, HUANG C, CHEN P, et al A low-RCS and high-gain partially reflecting surface antenna. IEEE Trans. on Antennas and Propagation, 2014, 62 (2): 945- 949.
doi: 10.1109/TAP.2013.2291008 |
98 |
LI W Q, CAO X Y, GAO J, et al Broadband RCS reduction and gain enhancement microstrip antenna using shared aperture artificial composite material based on quasi-fractal tree. IET Microwaves, Antennas and Propagation, 2016, 10 (4): 370- 377.
doi: 10.1049/iet-map.2015.0311 |
99 |
JIANG H, XUE Z H, LI W M, et al Low-RCS high-gain partially reflecting surface antenna with metamaterial ground plane. IEEE Trans. on Antennas and Propagation, 2016, 64 (9): 4127- 4132.
doi: 10.1109/TAP.2016.2589964 |
100 |
MU J, WANG H, WANG H, et al Low-RCS and gain enhancement design of a novel partially reflecting and absorbing surface antenna. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 1903- 1906.
doi: 10.1109/LAWP.2017.2685623 |
101 |
HAKIM L M V A, AANANDAN C K Radar cross section reduction of low profile Fabry-Perot resonator antenna using checkerboard artificial magnetic conductor. Advanced Electromagnetics, 2018, 7 (2): 76- 82.
doi: 10.7716/aem.v7i2.686 |
102 |
ZHENG Y J, GAO J, ZHOU Y L, et al Wideband gain enhancement and RCS reduction of Fabry-Perot resonator antenna with chessboard arranged metamaterial superstrate. IEEE Trans. on Antennas and Propagation, 2018, 66 (2): 590- 599.
doi: 10.1109/TAP.2017.2780896 |
103 |
ZARBAKHSH S, AKBARI M, SAMADI F, et al Broadband and high-gain circularly-polarized antenna with low RCS. IEEE Trans. on Antennas and Propagation, 2019, 67 (1): 16- 23.
doi: 10.1109/TAP.2018.2876234 |
104 |
LIU Z M, LIU S B, ZHAO X, et al Wideband gain enhancement and RCS reduction of Fabry-Perot antenna using hybrid reflection method. IEEE Trans. on Antennas and Propagation, 2020, 68 (9): 6497- 6505.
doi: 10.1109/TAP.2020.2988949 |
105 |
LI K, LIU Y, JIA Y T, et al A circularly polarized high-gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces. IEEE Trans. on Antennas and Propagation, 2017, 65 (8): 4288- 4292.
doi: 10.1109/TAP.2017.2710231 |
106 |
LONG M, JIANG W, GONG S X Wideband RCS reduction using polarization conversion metasurface and partially reflecting surface. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 2534- 2537.
doi: 10.1109/LAWP.2017.2731862 |
107 |
ZHENG Q, GUO C J, DING J Wideband and low RCS planar circularly polarized array based on polarization conversion of metasurface. Microwave and Optical Technology Letters, 2018, 60 (3): 784- 789.
doi: 10.1002/mop.31050 |
108 |
LIU Z, LIU S, BORNEMANN J, et al A low-RCS, high-GBP Fabry-Perot antenna with embedded chessboard polarization conversion metasurface. IEEE Access, 2020, 8, 80183- 80194.
doi: 10.1109/ACCESS.2020.2990602 |
109 |
ZHANG L, WAN X, LIU S, et al Realization of low scattering for a high-gain Fabry-Perot antenna using coding metasurface. IEEE Trans. on Antennas and Propagation, 2017, 65 (7): 3374- 3383.
doi: 10.1109/TAP.2017.2700874 |
110 |
JIA Y T, LIU Y, ZHANG W B, et al High-gain Fabry-Perot antennas with wideband low monostatic RCS using phase gradient metasurface. IEEE Access, 2019, 7, 4816- 4824.
doi: 10.1109/ACCESS.2018.2886832 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||