Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (4): 854-872.doi: 10.23919/JSEE.2021.000074
• SYSTEMS ENGINEERING • Previous Articles Next Articles
Xiangyuan TAN1(), Xiaoguang GAO1,*(), Chuchao HE1,2(), Zidong WANG1()
Received:
2020-06-24
Online:
2021-08-18
Published:
2021-09-30
Contact:
Xiaoguang GAO
E-mail:tanxy2017@mail.nwpu.edu.cn;cxg2012@nwpu.edu.cn;xomrssh@163.com;nwpu_wzd@mail.nwpu.edu.cn
About author:
Supported by:
Xiangyuan TAN, Xiaoguang GAO, Chuchao HE, Zidong WANG. Causal constraint pruning for exact learning of Bayesian network structure[J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 854-872.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Running time for IAMB, interIAMBnPC, HITON_PC and MMPC and the number of remaining possible parent sets by score calculations with Theorems 2?4 and different causal constraints algorithms on benchmark BNs"
Name | | | O | IAMB | interIAMBnPC | HITON_PC | MMPC | |||||||||
Time/s | |PPS| | Time/s | |PPS| | Time/s | |PPS| | Time/s | |PPS| | Time/s | |PPS| | |||||||
Asia | 8 | 500 | ? | 56 | 0.056 | 27 | 0.275 | 27 | 0.136 | 28 | 0.084 | 28 | ||||
Asia | 8 | 1 000 | ? | 58 | 0.061 | 27 | 0.284 | 27 | 0.148 | 30 | 0.090 | 30 | ||||
Asia | 8 | 5 000 | ? | 115 | 0.086 | 28 | 0.329 | 28 | 0.182 | 37 | 0.129 | 37 | ||||
Asia | 8 | 10 000 | ? | 132 | 0.121 | 35 | 0.441 | 35 | 0.224 | 41 | 0.167 | 41 | ||||
Asia | 8 | 15 000 | ? | 152 | 0.138 | 39 | 0.497 | 39 | 0.249 | 47 | 0.175 | 47 | ||||
Sachs | 11 | 500 | ? | 105 | 0.084 | 53 | 0.461 | 53 | 0.203 | 78 | 0.147 | 78 | ||||
Sachs | 11 | 1 000 | ? | 135 | 0.094 | 58 | 0.508 | 58 | 0.245 | 87 | 0.187 | 87 | ||||
Sachs | 11 | 5 000 | ? | 249 | 0.233 | 107 | 1.997 | 115 | 0.641 | 137 | 0.609 | 137 | ||||
Sachs | 11 | 10 000 | ? | 331 | 0.372 | 115 | 2.343 | 115 | 0.995 | 161 | 0.967 | 161 | ||||
Sachs | 11 | 15 000 | ? | 352 | 0.533 | 141 | 4.707 | 145 | 1.470 | 164 | 1.441 | 164 | ||||
Child | 20 | 500 | ? | 388 | 0.187 | 64 | 0.701 | 68 | 0.757 | 126 | 0.383 | 126 | ||||
Child | 20 | 1 000 | ? | 718 | 0.231 | 83 | 1.005 | 96 | 0.663 | 143 | 0.535 | 146 | ||||
Child | 20 | 5 000 | ? | 2 952 | 0.739 | 101 | 3.561 | 182 | 1.435 | 196 | 1.258 | 199 | ||||
Child | 20 | 10 000 | ? | 5 350 | 1.372 | 202 | 8.543 | 258 | 2.751 | 233 | 2.577 | 236 | ||||
Child | 20 | 15 000 | ? | 7 766 | 1.918 | 234 | 37.320 | 389 | 4.427 | 268 | 4.234 | 270 | ||||
Boerlage92 | 23 | 500 | ? | 188 | 0.329 | 98 | 1.393 | 90 | 0.263 | 91 | 0.211 | 91 | ||||
Boerlage92 | 23 | 1 000 | ? | 319 | 0.415 | 128 | 1.551 | 127 | 0.328 | 122 | 0.267 | 122 | ||||
Boerlage92 | 23 | 5 000 | ? | 603 | 0.994 | 174 | 3.035 | 169 | 0.564 | 146 | 0.474 | 146 | ||||
Boerlage92 | 23 | 10 000 | ? | 935 | 2.241 | 229 | 7.397 | 217 | 0.926 | 179 | 0.852 | 179 | ||||
Boerlage92 | 23 | 15 000 | ? | 1 130 | 3.167 | 275 | 17.112 | 210 | 1.203 | 180 | 1.158 | 180 | ||||
Insurance | 27 | 500 | ? | 324 | 0.332 | 97 | 1.056 | 103 | 0.482 | 150 | 0.402 | 151 | ||||
Insurance | 27 | 1 000 | ? | 578 | 0.411 | 140 | 1.596 | 146 | 0.675 | 195 | 0.664 | 195 | ||||
Insurance | 27 | 5 000 | ? | 1 297 | 1.448 | 205 | 7.575 | 221 | 2.648 | 235 | 2.563 | 235 | ||||
Insurance | 27 | 10 000 | ? | 1 681 | 2.729 | 233 | 16.170 | 258 | 5.938 | 259 | 5.678 | 260 | ||||
Insurance | 27 | 15 000 | ? | 2 128 | 4.357 | 280 | 24.737 | 297 | 9.455 | 280 | 8.695 | 282 |
Table 2
Running time and the number of expanded states for A* on possible parent sets without/with causal constraints from IAMB, interIAMBnPC, HITON_PC and MMPC algorithm on benchmark BNs"
Name | | | O | IAMB | interIAMBnPC | HITON_PC | MMPC | |||||||||
Time/s | Exp | Time/s | Exp | Time/s | Exp | Time/s | Exp | Time/s | Exp | |||||||
Asia | 8 | 500 | 0.001 | 125 | <0.001 | 103 | <0.001 | 117 | <0.001 | 109 | <0.001 | 109 | ||||
Asia | 8 | 1 000 | 0.001 | 136 | <0.001 | 112 | <0.001 | 112 | <0.001 | 108 | <0.001 | 108 | ||||
Asia | 8 | 5 000 | 0.001 | 139 | <0.001 | 113 | <0.001 | 113 | <0.001 | 93 | <0.001 | 93 | ||||
Asia | 8 | 10 000 | 0.002 | 144 | <0.001 | 124 | <0.001 | 124 | <0.001 | 114 | <0.001 | 114 | ||||
Asia | 8 | 15 000 | 0.002 | 140 | <0.001 | 118 | 0.001 | 118 | <0.001 | 96 | <0.001 | 96 | ||||
Sachs | 11 | 500 | 0.002 | 165 | <0.001 | 12 | <0.001 | 12 | 0.001 | 165 | 0.001 | 165 | ||||
Sachs | 11 | 1 000 | 0.002 | 208 | 0.001 | 136 | 0.001 | 136 | 0.001 | 208 | 0.001 | 208 | ||||
Sachs | 11 | 5 000 | 0.003 | 504 | 0.002 | 399 | 0.002 | 407 | 0.002 | 208 | 0.002 | 416 | ||||
Sachs | 11 | 10 000 | 0.003 | 635 | 0.003 | 507 | 0.002 | 507 | 0.002 | 507 | 0.002 | 507 | ||||
Sachs | 11 | 15 000 | 0.004 | 766 | 0.002 | 566 | 0.002 | 574 | 0.002 | 574 | 0.002 | 574 | ||||
Child | 20 | 500 | 0.134 | 34 680 | 0.131 | 42 878 | 0.133 | 52 933 | 0.095 | 26 364 | 0.094 | 26 364 | ||||
Child | 20 | 1 000 | 0.215 | 54 272 | 0.118 | 34 874 | 0.434 | 40 846 | 0.151 | 42 002 | 0.148 | 42 002 | ||||
Child | 20 | 5 000 | 1.121 | 257 794 | 0.464 | 128 509 | 0.434 | 116 975 | 0.362 | 96 994 | 0.355 | 97 076 | ||||
Child | 20 | 10 000 | 1.767 | 422 719 | 0.689 | 178 713 | 0.754 | 185 423 | 0.401 | 105 169 | 0.387 | 102 443 | ||||
Child | 20 | 15 000 | 2.156 | 515 067 | 0.724 | 186 036 | 0.934 | 231 675 | 0.576 | 157 753 | 0.561 | 152 182 | ||||
Boerlage92 | 23 | 500 | 9.218 | 2 002 229 | 7.549 | 1 629 662 | 7.531 | 1 643 588 | 7.526 | 1 644 468 | 7.516 | 1 644 468 | ||||
Boerlage92 | 23 | 1 000 | 10.779 | 2 270 241 | 8.149 | 1 676 800 | 8.159 | 1 712 640 | 8.008 | 1 693 686 | 8.104 | 1 693 686 | ||||
Boerlage92 | 23 | 5 000 | 15.167 | 3 170 609 | 9.749 | 1 971 856 | 9.297 | 1 904 565 | 8.665 | 1 769 324 | 8.621 | 1 777 607 | ||||
Boerlage92 | 23 | 10 000 | 17.505 | 3 600 953 | 11.089 | 2 279 706 | 10.853 | 2 236 253 | 9.555 | 1 987 578 | 9.487 | 1 987 578 | ||||
Boerlage92 | 23 | 15 000 | 18.076 | 3 667 072 | 11.608 | 2 396 507 | 10.369 | 2 140 995 | 9.593 | 2 003 462 | 9.487 | 2003 462 | ||||
Insurance | 27 | 500 | 186.683 | 23 824 490 | 55.613 | 8 123 998 | 115.004 | 16 341 269 | 70.659 | 9 026 318 | 71.113 | 9 052 354 | ||||
Insurance | 27 | 1 000 | 241.012 | 26 759 491 | 106.917 | 13 251 973 | 95.272 | 11 620 471 | 47.259 | 5 381 061 | 46.677 | 5 381 061 | ||||
Insurance | 27 | 5 000 | 252.271 | 24 618 675 | 89.624 | 10 120 638 | 58.262 | 6 330 008 | 30.263 | 3 045 470 | 30.186 | 3 045 470 | ||||
Insurance | 27 | 10 000 | 260.760 | 24 781 890 | 96.715 | 10 777 479 | 95.676 | 10 400 724 | 54.059 | 5 998 815 | 57.933 | 6 441 043 | ||||
Insurance | 27 | 15 000 | 263.783 | 24 799 024 | 91.023 | 10 313 747 | 94.508 | 10 499 471 | 27.062 | 2 759 230 | 26.381 | 2 752 446 |
Table 3
Score error ratio for A* on possible parent sets with causal constraints from IAMB, interIAMBnPC, HITON_PC and MMPC algorithm on benchmark BNs"
Name | | | IAMB | interIAMBnPC | HITON_PC | MMPC | |||
Error/% | Error/% | Error/% | Error/% | ||||||
Asia | 8 | 500 | 0.051 | 0.051 | 0.051 | 0.051 | |||
Asia | 8 | 1 000 | 0 | 0 | 0 | 0 | |||
Asia | 8 | 5 000 | 0 | 0 | 0 | 0 | |||
Asia | 8 | 10 000 | 0 | 0 | 0 | 0 | |||
Asia | 8 | 15 000 | 0 | 0 | 0 | 0 | |||
Sachs | 11 | 500 | 0 | 0 | 0 | 0 | |||
Sachs | 11 | 1 000 | 0 | 0 | 0 | 0 | |||
Sachs | 11 | 5 000 | 0 | 0 | 0 | 0 | |||
Sachs | 11 | 10 000 | 0 | 0 | 0 | 0 | |||
Sachs | 11 | 15 000 | 0 | 0 | 0 | 0 | |||
Child | 20 | 500 | 3.946 | 4.302 | 0.355 | 0.355 | |||
Child | 20 | 1 000 | 1.136 | 1.136 | 0.291 | 0.291 | |||
Child | 20 | 5 000 | 0 | 0 | 0 | 0 | |||
Child | 20 | 10 000 | 0 | 0 | 0 | 0 | |||
Child | 20 | 15 000 | 0 | 0 | 0 | 0 | |||
Boerlage92 | 23 | 500 | 0.02 | 0.04 | 0.03 | 0.03 | |||
Boerlage92 | 23 | 1 000 | 0 | 0 | 0 | 0 | |||
Boerlage92 | 23 | 5 000 | 0 | 0 | 0 | 0 | |||
Boerlage92 | 23 | 10 000 | 0 | 0 | 0 | 0 | |||
Boerlage92 | 23 | 15 000 | 0 | 0 | 0 | 0 | |||
Insurance | 27 | 500 | 1.494 | 2.69 | 0.796 | 0.796 | |||
Insurance | 27 | 1 000 | 1.485 | 1.399 | 1.006 | 1.006 | |||
Insurance | 27 | 5 000 | 0.074 | 0.712 | 0.607 | 0.607 | |||
Insurance | 27 | 10 000 | 0.266 | 0.154 | 0.171 | 0.098 | |||
Insurance | 27 | 15 000 | 0.226 | 0.155 | 0.756 | 0.188 |
Table 4
Running time and the number of expanded states for AWA* on possible parent sets without/with causal constraints from IAMB, interIAMBnPC, HITON_PC and MMPC algorithm on benchmark BNs"
Name | | | O | IAMB | interIAMBnPC | HITON_PC | MMPC | |||||||||
Time/s | Exp | Time/s | Exp | Time/s | Exp | Time/s | Exp | Time/s | Exp | |||||||
Asia | 8 | 500 | 0.001 | 168 | <0.001 | 138 | <0.001 | 149 | <0.001 | 140 | <0.001 | 140 | ||||
Asia | 8 | 1 000 | 0.001 | 171 | <0.001 | 137 | <0.001 | 137 | <0.001 | 126 | <0.001 | 126 | ||||
Asia | 8 | 5 000 | 0.001 | 215 | <0.001 | 132 | <0.001 | 132 | <0.001 | 107 | <0.001 | 107 | ||||
Asia | 8 | 10 000 | 0.002 | 200 | <0.001 | 150 | <0.001 | 150 | <0.001 | 140 | <0.001 | 140 | ||||
Asia | 8 | 15 000 | 0.002 | 193 | <0.001 | 141 | 0.001 | 141 | <0.001 | 107 | <0.001 | 107 | ||||
Sachs | 11 | 500 | 0.001 | 211 | <0.001 | 11 | 0.001 | 11 | 0.001 | 211 | 0.001 | 211 | ||||
Sachs | 11 | 1 000 | 0.002 | 271 | 0.001 | 210 | 0.001 | 210 | 0.001 | 271 | 0.001 | 271 | ||||
Sachs | 11 | 5 000 | 0.003 | 629 | 0.002 | 465 | 0.002 | 474 | 0.002 | 515 | 0.002 | 515 | ||||
Sachs | 11 | 10 000 | 0.003 | 783 | 0.002 | 590 | 0.002 | 590 | 0.002 | 567 | 0.002 | 567 | ||||
Sachs | 11 | 15 000 | 0.004 | 914 | 0.002 | 648 | 0.002 | 657 | 0.002 | 672 | 0.002 | 672 | ||||
Child | 20 | 500 | 0.106 | 45 312 | 0.089 | 56 377 | 0.083 | 70 166 | 0.075 | 36 423 | 0.074 | 36 423 | ||||
Child | 20 | 1 000 | 0.206 | 69 590 | 0.105 | 56 365 | 0.124 | 66 338 | 0.137 | 54 962 | 0.136 | 54 968 | ||||
Child | 20 | 5 000 | 0.136 | 323 846 | 0.532 | 157 852 | 0.510 | 144 046 | 0.363 | 115 466 | 0.354 | 115 359 | ||||
Child | 20 | 10 000 | 2.426 | 534 444 | 0.741 | 206 651 | 0.799 | 221 970 | 0.395 | 124 774 | 0.389 | 122 045 | ||||
Child | 20 | 15 000 | 2.679 | 595 660 | 0.718 | 197 563 | 0.961 | 258 258 | 0.584 | 167 969 | 0.566 | 162 513 | ||||
Boerlage92 | 23 | 500 | 12.437 | 3 641 617 | 8.650 | 2 620 661 | 8.689 | 2 525 971 | 8.868 | 2 527 587 | 8.379 | 2 527 587 | ||||
Boerlage92 | 23 | 1 000 | 18.308 | 5 219 135 | 11.861 | 2 790 937 | 12.239 | 3 016 173 | 11.597 | 2 603 555 | 11.620 | 2 603 555 | ||||
Boerlage92 | 23 | 5 000 | 34.003 | 7 824 034 | 13.538 | 3 187 562 | 12.043 | 2 924 839 | 10.425 | 2 383 324 | 10.449 | 2 404 162 | ||||
Boerlage92 | 23 | 10 000 | 43.521 | 9 344 601 | 18.528 | 4 074 288 | 15.784 | 3 613 529 | 13.082 | 3 001 835 | 13.054 | 3 001 835 | ||||
Boerlage92 | 23 | 15 000 | 50.139 | 11 392 055 | 22.779 | 5 890 686 | 15.868 | 4 255 227 | 13.775 | 3 667 091 | 13.840 | 3 667 091 | ||||
Insurance | 27 | 500 | 326.255 | 35 221 890 | 121.797 | 13 147 458 | 240.307 | 24 872 911 | 117.765 | 12 159 904 | 118.266 | 12 175 999 | ||||
Insurance | 27 | 1 000 | 440.560 | 36 488 412 | 190.548 | 16 189 733 | 148.147 | 13 831 906 | 79.761 | 6 674 497 | 79.076 | 6 674 497 | ||||
Insurance | 27 | 5 000 | 422.335 | 32 290 896 | 153.058 | 12 203 266 | 97.446 | 7 284 575 | 45.638 | 3 531 862 | 46.176 | 3 531 862 | ||||
Insurance | 27 | 10 000 | 418.924 | 32 537 843 | 150.942 | 13 010 259 | 94.225 | 10 400 724 | 86.234 | 6 773 569 | 89.966 | 7 282 880 | ||||
Insurance | 27 | 15 000 | 423.794 | 31 664 273 | 145.392 | 11 579 608 | 144.688 | 11 510 705 | 41.545 | 3 056 943 | 38.542 | 3 038 247 |
Table 5
Score error ratio for AWA* on possible parent sets with causal constraints from IAMB, interIAMBnPC, HITON_PC and MMPC algorithm on benchmark BNs"
Name | | | IAMB | interIAMBnPC | HITON_PC | MMPC | |||
Error/% | Error/% | Error/% | Error/% | ||||||
Asia | 8 | 500 | 0.051 | 0.051 | 0.051 | 0.051 | |||
Asia | 8 | 1 000 | 0 | 0 | 0 | 0 | |||
Asia | 8 | 5 000 | 0 | 0 | 0 | 0 | |||
Asia | 8 | 10 000 | 0 | 0 | 0 | 0 | |||
Asia | 8 | 15 000 | 0 | 0 | 0 | 0 | |||
Sachs | 11 | 500 | 0 | 0 | 0 | 0 | |||
Sachs | 11 | 1 000 | 0 | 0 | 0 | 0 | |||
Sachs | 11 | 5 000 | 0 | 0 | 0 | 0 | |||
Sachs | 11 | 10 000 | 0 | 0 | 0 | 0 | |||
Sachs | 11 | 15 000 | 0 | 0 | 0 | 0 | |||
Child | 20 | 500 | 3.946 | 4.302 | 0.355 | 0.355 | |||
Child | 20 | 1 000 | 1.136 | 1.136 | 0.291 | 0.291 | |||
Child | 20 | 5 000 | 0 | 0 | 0 | 0 | |||
Child | 20 | 10 000 | 0 | 0 | 0 | 0 | |||
Child | 20 | 15 000 | 0 | 0 | 0 | 0 | |||
Boerlage92 | 23 | 500 | 0.02 | 0.04 | 0.03 | 0.03 | |||
Boerlage92 | 23 | 1 000 | 0 | 0 | 0 | 0 | |||
Boerlage92 | 23 | 5 000 | 0 | 0 | 0 | 0 | |||
Boerlage92 | 23 | 10 000 | 0 | 0 | 0 | 0 | |||
Boerlage92 | 23 | 15 000 | 0 | 0 | 0 | 0 | |||
Insurance | 27 | 500 | 1.494 | 2.69 | 0.796 | 0.796 | |||
Insurance | 27 | 1 000 | 1.485 | 1.399 | 1.006 | 1.006 | |||
Insurance | 27 | 5 000 | 0.074 | 0.712 | 0.607 | 0.607 | |||
Insurance | 27 | 10 000 | 0.266 | 0.154 | 0.171 | 0.098 | |||
Insurance | 27 | 15 000 | 0.226 | 0.155 | 0.756 | 0.188 |
Table 6
Running time and the number of expanded states for BFBnB on possible parent sets without/with causal constraints from IAMB, interIAMBnPC, HITON_PC and MMPC algorithm on benchmark BNs"
Name | | | O | IAMB | interIAMBnPC | HITON_PC | MMPC | |||||||||
Time/s | Exp | Time/s | Exp | Time/s | Exp | Time/s | Exp | Time/s | Exp | |||||||
Asia | 8 | 500 | 0.003 | 135 | 0.002 | 115 | 0.002 | 129 | 0.002 | 121 | 0.003 | 121 | ||||
Asia | 8 | 1 000 | 0.003 | 147 | 0.003 | 125 | 0.003 | 125 | 0.002 | 119 | 0.002 | 119 | ||||
Asia | 8 | 5 000 | 0.003 | 151 | 0.002 | 125 | 0.002 | 125 | 0.002 | 105 | 0.002 | 105 | ||||
Asia | 8 | 10 000 | 0.003 | 151 | 0.002 | 131 | 0.002 | 131 | 0.003 | 121 | 0.003 | 121 | ||||
Asia | 8 | 15 000 | 0.003 | 151 | 0.003 | 129 | 0.003 | 129 | 0.003 | 107 | 0.003 | 107 | ||||
Sachs | 11 | 500 | 0.004 | 389 | 0.003 | 286 | 0.003 | 286 | 0.003 | 389 | 0.003 | 389 | ||||
Sachs | 11 | 1 000 | 0.004 | 567 | 0.003 | 487 | 0.003 | 487 | 0.003 | 567 | 0.003 | 567 | ||||
Sachs | 11 | 5 000 | 0.005 | 751 | 0.004 | 647 | 0.004 | 655 | 0.004 | 663 | 0.004 | 663 | ||||
Sachs | 11 | 10 000 | 0.006 | 887 | 0.004 | 759 | 0.004 | 759 | 0.004 | 759 | 0.004 | 759 | ||||
Sachs | 11 | 15 000 | 0.006 | 848 | 0.004 | 648 | 0.004 | 656 | 0.004 | 656 | 0.004 | 656 | ||||
Child | 20 | 500 | 0.092 | 92 481 | NF | NF | NF | NF | 0.061 | 57 947 | 0.060 | 57 947 | ||||
Child | 20 | 1 000 | 0.128 | 76 775 | NF | NF | NF | NF | 0.072 | 45 131 | 0.070 | 45 131 | ||||
Child | 20 | 5 000 | 0.603 | 376 865 | 0.214 | 184 286 | 0.202 | 170 007 | 0.158 | 124 484 | 0.151 | 124 605 | ||||
Child | 20 | 10 000 | 0.891 | 423 868 | 0.219 | 179 870 | 0.229 | 186 590 | 0.165 | 106 323 | 0.157 | 103 591 | ||||
Child | 20 | 15 000 | 1.012 | 516 250 | 0.234 | 187 198 | 0.398 | 232 894 | 0.221 | 158 911 | 0.195 | 153 340 | ||||
Boerlage92 | 23 | 500 | 3.526 | 2 090 821 | 2.706 | 1 673 951 | 2.681 | 1 670 347 | 2.705 | 1 671 227 | 2.718 | 1 671 227 | ||||
Boerlage92 | 23 | 1 000 | 4.321 | 2 454 960 | 2.979 | 1 793 979 | 3.044 | 1 827 721 | 3.002 | 1 799 098 | 3.012 | 1 799 098 | ||||
Boerlage92 | 23 | 5 000 | 6.056 | 3 419 002 | 3.594 | 2 082 056 | 3.478 | 2 009 629 | 3.271 | 1 876 156 | 3.216 | 1 876 999 | ||||
Boerlage92 | 23 | 10 000 | 6.876 | 3 839 752 | 4.384 | 2 458 616 | 4.236 | 2 381 948 | 3.679 | 2 111 023 | 3.648 | 2 111 023 | ||||
Boerlage92 | 23 | 15 000 | 7.207 | 3 917 658 | 4.521 | 2 556 979 | 3.872 | 2 252 900 | 3.650 | 2 096 352 | 3.597 | 2 096 352 | ||||
Insurance | 27 | 500 | 226.386 | 55 726 235 | NF | NF | NF | NF | 51.986 | 14 205 451 | 52.052 | 14 247 975 | ||||
Insurance | 27 | 1 000 | 212.368 | 50 838 649 | NF | NF | NF | NF | 23.654 | 6 571 771 | 23.572 | 6 571 771 | ||||
Insurance | 27 | 5 000 | 148.417 | 35 098 042 | 55.001 | 14 126 761 | NF | NF | 10.813 | 3 298 588 | 10.754 | 3 298 588 | ||||
Insurance | 27 | 10 000 | 130.424 | 30 399 206 | 45.651 | 11 668 957 | 46.962 | 11 905 130 | 25.667 | 7 201 991 | 24.988 | 7 003 247 | ||||
Insurance | 27 | 15 000 | 132.896 | 30 768 715 | 45.121 | 11 545 319 | 48.683 | 12 176 353 | NF | NF | 11.004 | 3 309 853 |
Table 7
Score error ratio for BFBnB on possible parent sets with causal constraints from IAMB, interIAMBnPC, HITON_PC and MMPC algorithm on benchmark BNs"
Name | | | IAMB | interIAMBnPC | HITON_PC | MMPC | |||
Error/% | Error/% | Error/% | Error/% | ||||||
Asia | 8 | 500 | 0.051 | 0.051 | 0.051 | 0.051 | |||
Asia | 8 | 1 000 | 0 | 0 | 0 | 0 | |||
Asia | 8 | 5 000 | 0 | 0 | 0 | 0 | |||
Asia | 8 | 10 000 | 0 | 0 | 0 | 0 | |||
Asia | 8 | 15 000 | 0 | 0 | 0 | 0 | |||
Sachs | 11 | 500 | 0 | 0 | 0 | 0 | |||
Sachs | 11 | 1 000 | 0 | 0 | 0 | 0 | |||
Sachs | 11 | 5 000 | 0 | 0 | 0 | 0 | |||
Sachs | 11 | 10 000 | 0 | 0 | 0 | 0 | |||
Sachs | 11 | 15 000 | 0 | 0 | 0 | 0 | |||
Child | 20 | 500 | NF | NF | 0.355 | 0.355 | |||
Child | 20 | 1 000 | NF | NF | 0.291 | 0.291 | |||
Child | 20 | 5 000 | 0 | 0 | 0 | 0 | |||
Child | 20 | 10 000 | 0 | 0 | 0 | 0 | |||
Child | 20 | 15 000 | 0 | 0 | 0 | 0 | |||
Boerlage92 | 23 | 500 | 0.02 | 0.04 | 0.03 | 0.03 | |||
Boerlage92 | 23 | 1 000 | 0 | 0 | 0 | 0 | |||
Boerlage92 | 23 | 5 000 | 0 | 0 | 0 | 0 | |||
Boerlage92 | 23 | 10 000 | 0 | 0 | 0 | 0 | |||
Boerlage92 | 23 | 15 000 | 0 | 0 | 0 | 0 | |||
Insurance | 27 | 500 | NF | NF | 0.796 | 0.796 | |||
Insurance | 27 | 1 000 | NF | NF | 1.006 | 1.006 | |||
Insurance | 27 | 5 000 | 0.074 | NF | 0.607 | 0.607 | |||
Insurance | 27 | 10 000 | 0.266 | 0.154 | 0.171 | 0.098 | |||
Insurance | 27 | 15 000 | 0.226 | 0.155 | NF | 0.188 |
Table 8
Running time and score error ratio for GOBNILP on possible parent sets without/with causal constraints from IAMB, interIAMBnPC, HITON_PC and MMPC algorithm on benchmark BNs"
Name | | | O | IAMB | interIAMBnPC | HITON_PC | MMPC | |||||||||
Time/s | Error/% | Time/s | Error/% | Time/s | Error/% | Time/s | Error/% | Time/s | Error/% | |||||||
Asia | 8 | 500 | 0.047 | ? | 0.011 | 0.051 | 0.010 | 0.051 | 0.036 | 0.051 | 0.027 | 0.051 | ||||
Asia | 8 | 1 000 | 0.055 | ? | 0.011 | 0 | 0.010 | 0 | 0.036 | 0 | 0.030 | 0 | ||||
Asia | 8 | 5 000 | 0.056 | ? | 0.010 | 0 | 0.010 | 0 | 0.043 | 0 | 0.042 | 0 | ||||
Asia | 8 | 10 000 | 0.064 | ? | 0.020 | 0 | 0.019 | 0 | 0.036 | 0 | 0.037 | 0 | ||||
Asia | 8 | 15 000 | 0.519 | ? | 0.028 | 0 | 0.029 | 0 | 0.041 | 0 | 0.040 | 0 | ||||
Sachs | 11 | 500 | 0.148 | ? | 0.031 | 0 | 0.030 | 0 | 0.125 | 0 | 0.126 | 0 | ||||
Sachs | 11 | 1 000 | 0.236 | ? | 0.066 | 0 | 0.064 | 0 | 0.182 | 0 | 0.184 | 0 | ||||
Sachs | 11 | 5 000 | 0.277 | ? | 0.128 | 0 | 0.150 | 0 | 0.172 | 0 | 0.171 | 0 | ||||
Sachs | 11 | 10 000 | 0.286 | ? | 0.110 | 0 | 0.095 | 0 | 0.173 | 0 | 0.175 | 0 | ||||
Sachs | 11 | 15 000 | 0.237 | ? | 0.112 | 0 | 0.100 | 0 | 0.141 | 0 | 0.140 | 0 | ||||
Child | 20 | 500 | 0.255 | ? | 0.056 | 3.946 | 0.060 | 4.302 | 0.073 | 0.355 | 0.075 | 0.355 | ||||
Child | 20 | 1 000 | 0.423 | ? | 0.078 | 1.136 | 0.088 | 1.136 | 0.089 | 0.291 | 0.087 | 0.291 | ||||
Child | 20 | 5 000 | 4.174 | ? | 0.171 | 0 | 0.389 | 0 | 0.092 | 0 | 0.091 | 0 | ||||
Child | 20 | 10 000 | 9.810 | ? | 0.350 | 0 | 0.723 | 0 | 0.109 | 0 | 0.105 | 0 | ||||
Child | 20 | 15 000 | 22.694 | ? | 0.361 | 0 | 0.725 | 0 | 0.115 | 0 | 0.127 | 0 | ||||
Boerlage92 | 23 | 500 | 0.261 | ? | 0.076 | 0.02 | 0.017 | 0.04 | 0.017 | 0.03 | 0.016 | 0.03 | ||||
Boerlage92 | 23 | 1 000 | 0.323 | ? | 0.097 | 0 | 0.086 | 0 | 0.065 | 0 | 0.061 | 0 | ||||
Boerlage92 | 23 | 5 000 | 0.215 | ? | 0.080 | 0 | 0.068 | 0 | 0.053 | 0 | 0.052 | 0 | ||||
Boerlage92 | 23 | 10 000 | 0.447 | ? | 0.119 | 0 | 0.066 | 0 | 0.082 | 0 | 0.081 | 0 | ||||
Boerlage92 | 23 | 15 000 | 1.131 | ? | 0.159 | 0 | 0.117 | 0 | 0.115 | 0 | 0.118 | 0 | ||||
Insurance | 27 | 500 | 0.983 | ? | 0.037 | 1.494 | 0.049 | 2.69 | 0.107 | 0.796 | 0.105 | 0.796 | ||||
Insurance | 27 | 1 000 | 1.054 | ? | 0.068 | 1.485 | 0.057 | 1.399 | 0.122 | 1.006 | 0.121 | 1.006 | ||||
Insurance | 27 | 5 000 | 7.294 | ? | 0.145 | 0.074 | 0.472 | 0.712 | 0.125 | 0.607 | 0.123 | 0.607 | ||||
Insurance | 27 | 10 000 | 9.690 | ? | 0.746 | 0.266 | 0.221 | 0.154 | 0.160 | 0.171 | 0.138 | 0.098 | ||||
Insurance | 27 | 15 000 | 5.940 | ? | 1.338 | 0.226 | 1.199 | 0.155 | 0.218 | 0.756 | 0.125 | 0.188 |
Table 9
Time for IAMB, interIAMBnPC, HITON_PC and MMPC and the number of remaining possible parent sets by score calculations with Theorems 2?4 and different causal constraints algorithms on UCI datasets"
Name | | | O | IAMB | interIAMBnPC | HITON_PC | MMPC | |||||||||
Time/s | |PPS| | Time/s | |PPS| | Time/s | |PPS| | Time/s | |PPS| | Time/s | |PPS| | |||||||
Wine | 14 | 178 | ? | 471 | 0.148 | 62 | 0.645 | 64 | 0.274 | 95 | 0.190 | 98 | ||||
Adult | 14 | 30 162 | ? | 3 536 | 5.939 | 2 507 | 3 376.793 | 2 576 | 88.530 | 1 962 | 161.775 | 1 915 | ||||
Zoo | 17 | 101 | ? | 823 | 0.133 | 80 | 0.663 | 82 | 0.263 | 111 | 0.217 | 118 | ||||
Letter | 17 | 20 000 | ? | 115 671 | 6.056 | 13 636 | 2 950.391 | 13 585 | 662.529 | 36 264 | 2 505.648 | 36 264 | ||||
Voting | 17 | 435 | ? | 392 | 0.161 | 72 | 0.758 | 75 | 0.573 | 124 | 0.520 | 128 | ||||
Statlog | 19 | 752 | ? | 3 953 | 0.368 | 393 | 6.438 | 371 | 0.604 | 226 | 0.555 | 231 | ||||
Hepatitis | 20 | 126 | ? | 302 | 0.166 | 86 | 0.651 | 88 | 0.257 | 90 | 0.206 | 94 | ||||
Segment | 20 | 2 310 | ? | 3 423 | 0.586 | 557 | 13.710 | 514 | 2.043 | 412 | 2.025 | 426 | ||||
Imports | 22 | 205 | ? | 1 388 | 0.265 | 167 | 2.019 | 158 | 0.452 | 212 | 0.385 | 223 | ||||
Meta | 22 | 528 | ? | 42 527 | 0.291 | 321 | 2.388 | 329 | 8.123 | 1 939 | 7.947 | 1 516 | ||||
Parkinsons | 23 | 195 | ? | 2 441 | 0.258 | 142 | 1.412 | 149 | 0.401 | 152 | 0.310 | 149 | ||||
Heart | 23 | 212 | ? | 435 | 0.285 | 131 | 1.710 | 123 | 0.321 | 122 | 0.248 | 122 | ||||
Horse | 23 | 300 | ? | 663 | 0.295 | 156 | 1.928 | 155 | 0.401 | 152 | 0.332 | 153 | ||||
Mushroom | 23 | 8 124 | ? | 13 025 | 0.984 | 181 | 3.142 | 179 | 344.839 | 5 499 | 396.121 | 5 717 | ||||
Autos | 26 | 159 | ? | 2 391 | 0.267 | 135 | 1.231 | 141 | 0.416 | 188 | 0.353 | 198 |
Table 10
Time and the number of expanded states for A* on possible parent sets without/with causal constraints from IAMB, interIAMBnPC, HITON_PC and MMPC algorithm on UCI datasets"
Name | | | O | IAMB | interIAMBnPC | HITON_PC | MMPC | |||||||||
Time/s | Exp | Time/s | Exp | Time/s | Exp | Time/s | Exp | Time/s | Exp | |||||||
Wine | 14 | 178 | 0.008 | 2 807 | 0.003 | 1 415 | 0.003 | 1 138 | 0.004 | 1 975 | 0.004 | 1 371 | ||||
Adult | 14 | 30 162 | 0.046 | 12 416 | 0.040 | 12 415 | 0.040 | 12 414 | 0.040 | 12 332 | 0.039 | 12 310 | ||||
Zoo | 17 | 101 | 0.054 | 20 469 | 0.020 | 9 214 | 0.019 | 7 566 | 0.016 | 6 756 | 0.015 | 5 825 | ||||
Letter | 17 | 20 000 | 3.212 | 99 581 | 0.622 | 89 327 | 0.620 | 89 313 | 1.278 | 94 709 | 1.271 | 94 709 | ||||
Voting | 17 | 435 | 0.010 | 2 522 | 0.006 | 2 176 | 0.005 | 1 563 | 0.006 | 1 652 | 0.008 | 1 822 | ||||
Statlog | 19 | 752 | 0.906 | 220 236 | 0.294 | 74 676 | 0.335 | 80 678 | 0.275 | 68 507 | 0.238 | 73 410 | ||||
Hepatitis | 20 | 126 | 0.033 | 8 515 | 0.023 | 4 141 | 0.023 | 4 239 | 0.025 | 6 921 | 0.019 | 2 824 | ||||
Segment | 20 | 2 310 | 1.928 | 428 083 | 0.655 | 136 947 | 0.701 | 152 096 | 0.900 | 201 572 | 0.918 | 218 456 | ||||
Imports | 22 | 205 | 11.560 | 2 052 430 | 6.797 | 1 282 205 | 5.233 | 984 647 | 5.823 | 1 095 346 | 5.692 | 1 067 093 | ||||
Meta | 22 | 528 | 5.917 | 441 824 | 1.344 | 236 035 | 1.348 | 231 464 | 2.194 | 316 992 | 1.290 | 189 239 | ||||
Parkinsons | 23 | 195 | 7.169 | 1 152 578 | 6.988 | 1 229 496 | 1.522 | 261 314 | 1.237 | 204 660 | 1.204 | 196 702 | ||||
Heart | 23 | 212 | 23.488 | 4 456 334 | 16.236 | 3 274 159 | 15.476 | 3 139 622 | 15.652 | 3 405 704 | 17.202 | 3 517 762 | ||||
Horse | 23 | 300 | 15.754 | 3 126 901 | 13.218 | 2 722 928 | 12.205 | 2 526 467 | 12.725 | 2 457 079 | 12.173 | 2 618 225 | ||||
Mushroom | 23 | 8 124 | 0.601 | 49 593 | 0.030 | 5 917 | 0.027 | 5 328 | 0.263 | 29 159 | 0.358 | 38 835 | ||||
Autos | 26 | 159 | 45.141 | 4 762 546 | 7.072 | 896 549 | 12.71 | 1 596 750 | 12.848 | 1 448 494 | 14.911 | 1 646 928 |
Table 11
Score error ratio for A* on possible parent sets with causal constraints from IAMB, interIAMBnPC, HITON_PC and MMPC algorithm on UCI datasets"
Name | | | IAMB | interIAMBnPC | HITON_PC | MMPC | |||
Error/% | Error/% | Error/% | Error/% | ||||||
Wine | 14 | 178 | 0.478 | 0 | 0.047 | 0 | |||
Adult | 14 | 30 162 | 0 | 0 | 0 | 0 | |||
Zoo | 17 | 101 | 2.973 | 2.67 | 1.373 | 1.373 | |||
Letter | 17 | 20 000 | 0.105 | 0.107 | 0 | 0 | |||
Voting | 17 | 435 | 0.331 | 0.228 | 0.193 | 0.045 | |||
Statlog | 19 | 752 | 0.608 | 0.608 | 0.534 | 0.459 | |||
Hepatitis | 20 | 126 | 0.265 | 0.265 | 0.538 | 0.265 | |||
Segment | 20 | 2 310 | 0.012 | 0.545 | 0.764 | 0.764 | |||
Imports | 22 | 205 | 2.084 | 3.694 | 4.093 | 3.996 | |||
Meta | 22 | 528 | 25.416 | 25.484 | 28.171 | 28.089 | |||
Parkinsons | 23 | 195 | 8.015 | 2.915 | 2.180 | 1.357 | |||
Heart | 23 | 212 | 0.552 | 0.300 | 0.695 | 0.565 | |||
Horse | 23 | 300 | 0.298 | 0.136 | 0.253 | 0.169 | |||
Mushroom | 23 | 8 124 | 14.367 | 14.506 | 2.369 | 2.074 | |||
Autos | 26 | 159 | 2.088 | 3.185 | 2.828 | 2.607 |
Table 12
Time and the number of expanded states for AWA* on possible parent sets without/with causal constraints from IAMB, interIAMBnPC, HITON_PC and MMPC algorithm on UCI datasets"
Name | | | O | IAMB | interIAMBnPC | HITON_PC | MMPC | |||||||||
Time/s | Exp | Time/s | Exp | Time/s | Exp | Time/s | Exp | Time/s | Exp | |||||||
Wine | 14 | 178 | 0.008 | 4 172 | 0.003 | 1 934 | 0.003 | 1 537 | 0.004 | 2 757 | 0.004 | 1 948 | ||||
Adult | 14 | 30 162 | 0.067 | 30 948 | 0.054 | 29 172 | 0.057 | 31 018 | 0.047 | 28 321 | 0.050 | 3 1562 | ||||
Zoo | 17 | 101 | 0.055 | 25 131 | 0.021 | 10 992 | 0.019 | 9 096 | 0.018 | 8 916 | 0.015 | 7 772 | ||||
Letter | 17 | 20 000 | 3.839 | 129 184 | 0.883 | 147 182 | 0.855 | 139 858 | 1.546 | 134 134 | 1.535 | 134 134 | ||||
Voting | 17 | 435 | 0.011 | 3 771 | 0.006 | 3 929 | 0.006 | 2 800 | 0.006 | 2 474 | 0.007 | 2 865 | ||||
Statlog | 19 | 752 | 1.099 | 338 997 | 0.266 | 107 030 | 0.292 | 116 200 | 0.221 | 98 668 | 0.227 | 98 586 | ||||
Hepatitis | 20 | 126 | 0.032 | 10 641 | 0.018 | 5 842 | 0.017 | 5 424 | 0.029 | 104 90 | 0.012 | 3 826 | ||||
Segment | 20 | 2 310 | 3.311 | 908 547 | 0.800 | 289 212 | 0.891 | 329 840 | 1.080 | 413 734 | 1.171 | 442 602 | ||||
Imports | 22 | 205 | 18.539 | 3 075 638 | 9.601 | 1 688 208 | 7.011 | 1 388 255 | 8.296 | 1 606 617 | 7.824 | 1449 783 | ||||
Meta | 22 | 528 | 7.358 | 517 954 | 1.730 | 257 423 | 1.724 | 251 933 | 2.273 | 354 016 | 1.416 | 211 890 | ||||
Parkinsons | 23 | 195 | 8.659 | 1744 071 | 8.528 | 2 095 918 | 1.611 | 396 070 | 1.390 | 358 517 | 1.211 | 317 486 | ||||
Heart | 23 | 212 | 40.887 | 7 787 034 | 28.810 | 5 503 125 | 27.917 | 4 852 437 | 26.574 | 5 037 576 | 30.895 | 6 236 589 | ||||
Horse | 23 | 300 | 30.282 | 5 386 046 | 21.360 | 4 115 989 | 19.718 | 3 724 605 | 18.805 | 3 505 212 | 18.829 | 4 111 884 | ||||
Mushroom | 23 | 8 124 | 0.654 | 64 057 | 0.045 | 9 441 | 0.044 | 9 412 | 0.239 | 35 906 | 0.302 | 51 448 | ||||
Autos | 26 | 159 | 70.516 | 7 528 551 | 8.968 | 1 401 600 | 15.667 | 2 463 736 | 16.46 | 2 268 550 | 18.919 | 2 513 044 |
Table 13
Score error ratio for AWA* on possible parent sets with causal constraints from IAMB, interIAMBnPC, HITON_PC and MMPC algorithm on UCI datasets"
Name | | | IAMB | interIAMBnPC | HITON_PC | MMPC | |||
Error/% | Error/% | Error/% | Error/% | ||||||
Wine | 14 | 178 | 0.478 | 0 | 0.047 | 0 | |||
Adult | 14 | 30 162 | 0 | 0 | 0 | 0 | |||
Zoo | 17 | 101 | 2.973 | 2.67 | 1.373 | 1.373 | |||
Letter | 17 | 20 000 | 0.105 | 0.107 | 0 | 0 | |||
Voting | 17 | 435 | 0.331 | 0.228 | 0.193 | 0.045 | |||
Statlog | 19 | 752 | 0.608 | 0.608 | 0.534 | 0.459 | |||
Hepatitis | 20 | 126 | 0.265 | 0.265 | 0.538 | 0.265 | |||
Segment | 20 | 2 310 | 0.012 | 0.545 | 0.764 | 0.764 | |||
Imports | 22 | 205 | 2.084 | 3.694 | 4.093 | 3.996 | |||
Meta | 22 | 528 | 25.416 | 25.484 | 28.171 | 28.089 | |||
Parkinsons | 23 | 195 | 8.015 | 2.915 | 2.180 | 1.357 | |||
Heart | 23 | 212 | 0.552 | 0.300 | 0.695 | 0.565 | |||
Horse | 23 | 300 | 0.298 | 0.136 | 0.253 | 0.169 | |||
Mushroom | 23 | 8 124 | 14.367 | 14.506 | 2.369 | 2.074 | |||
Autos | 26 | 159 | 2.088 | 3.185 | 2.828 | 2.607 |
Table 14
Time and the number of expanded states for BFBnB on possible parent sets without/with causal constraints from IAMB, interIAMBnPC, HITON_PC and MMPC algorithm on UCI datasets"
Name | | | O | IAMB | interIAMBnPC | HITON_PC | MMPC | |||||||||
Time/s | Exp | Time/s | Exp | Time/s | Exp | Time/s | Exp | Time/s | Exp | |||||||
Wine | 14 | 178 | 0.032 | 5 517 | NF | NF | 0.008 | 3 685 | 0.009 | 4663 | 0.099 | 3950 | ||||
Adult | 14 | 30 162 | 0.048 | 12 754 | 0.038 | 12 753 | 0.038 | 12 748 | 0.033 | 12 560 | 0.032 | 12 545 | ||||
Zoo | 17 | 101 | 0.078 | 78 156 | NF | NF | NF | NF | 0.017 | 10 880 | 0.016 | 9 572 | ||||
Letter | 17 | 20 000 | 3.152 | 105 267 | 0.560 | 89 701 | 0.556 | 89 597 | 1.129 | 79 488 | 1.126 | 79 488 | ||||
Voting | 17 | 435 | 0.023 | 19 580 | NF | NF | 0.010 | 6 937 | 0.015 | 13 740 | 0.013 | 8 905 | ||||
Statlog | 19 | 752 | 0.475 | 379 772 | 0.104 | 77 742 | 0.107 | 84 115 | 0.090 | 74 368 | 0.098 | 83 863 | ||||
Hepatitis | 20 | 126 | 0.145 | 129 887 | 0.018 | 9 331 | 0.017 | 9 622 | NF | NF | 0.015 | 7 631 | ||||
Segment | 20 | 2 310 | 1.168 | 804 247 | 0.256 | 198 323 | 0.225 | 168 515 | 0.248 | 202 335 | 0.268 | 219 451 | ||||
Imports | 22 | 205 | 4.652 | 2 872 849 | NF | NF | NF | NF | NF | NF | NF | NF | ||||
Meta | 22 | 528 | 9.831 | 2 399 817 | NF | NF | NF | NF | NF | NF | NF | NF | ||||
Parkinsons | 23 | 195 | 6.346 | 3 357 715 | NF | NF | NF | NF | NF | NF | 6.104 | 79 388 | ||||
Heart | 23 | 212 | 11.288 | 6 654 782 | 6.221 | 3 667 272 | 6.768 | 4 108 604 | 4.236 | 2 684 819 | 6.112 | 3 594 282 | ||||
Horse | 23 | 300 | 8.005 | 4 719 935 | NF | NF | 4.626 | 2 902 559 | NF | NF | 4.231 | 2 663 635 | ||||
Mushroom | 23 | 8 124 | 5.151 | 2 611 613 | NF | NF | NF | NF | NF | NF | 0.180 | 42 619 | ||||
Autos | 26 | 159 | 204.938 | 58 753 751 | 3.018 | 1 798 719 | NF | NF | NF | NF | 3.665 | 1 860 981 |
Table 15
Score error ratio for BFBnB on possible parent sets with causal constraints from IAMB, interIAMBnPC, HITON_PC and MMPC algorithm on UCI datasets"
Name | | | IAMB | interIAMBnPC | HITON_PC | MMPC |
Error/% | Error/% | Error/% | Error/% | |||
Wine | 14 | 178 | NF | 0 | 0.047 | 0 |
Adult | 14 | 30 162 | 0 | 0 | 0 | 0 |
Zoo | 17 | 101 | NF | NF | 1.373 | 1.373 |
Letter | 17 | 20 000 | 0.105 | 0.107 | 0 | 0 |
Voting | 17 | 435 | NF | 0.228 | 0.193 | 0.045 |
Statlog | 19 | 752 | 0.608 | 0.608 | 0.534 | 0.459 |
Hepatitis | 20 | 126 | 0.265 | 0.265 | 0.538 | 0.265 |
Segment | 20 | 2 310 | 0.012 | 0.545 | 0.764 | 0.764 |
Imports | 22 | 205 | NF | NF | NF | NF |
Meta | 22 | 528 | NF | NF | NF | NF |
Parkinsons | 23 | 195 | NF | NF | NF | 1.357 |
Heart | 23 | 212 | 0.552 | 0.300 | 0.695 | 0.565 |
Horse | 23 | 300 | NF | 0.136 | NF | 0.169 |
Mushroom | 23 | 8 124 | NF | NF | NF | 2.074 |
Autos | 26 | 159 | 2.088 | NF | NF | 2.607 |
Table 16
Time and score error ratio for GOBNILP on possible parent sets without/with causal constraints from IAMB, interIAMBnPC, HITON_PC and MMPC algorithm on standard BNs"
Name | | | O | IAMB | interIAMBnPC | HITON_PC | MMPC | |||||||||
Time/s | Error/% | Time/s | Error/% | Time/s | Error/% | Time/s | Error/% | Time/s | Error/% | |||||||
Wine | 14 | 178 | 0.951 | ? | 0.045 | 0.478 | 0.053 | 0 | 0.084 | 0.047 | 0.080 | 0 | ||||
Adult | 14 | 30 162 | 15.241 | ? | 8.197 | 0 | 12.242 | 0 | 3.682 | 0 | 3.992 | 0 | ||||
Zoo | 17 | 101 | 4.766 | ? | 0.076 | 2.973 | 0.048 | 2.67 | 0.072 | 1.373 | 0.102 | 1.373 | ||||
Letter | 17 | 20 000 | OT | ? | 1705.224 | 0.105 | 3848.396 | 0.107 | 3656.604 | 0 | 3665.047 | 0 | ||||
Voting | 17 | 435 | 0.565 | ? | 0.170 | 0.331 | 0.093 | 0.228 | 0.259 | 0.193 | 0.253 | 0.045 | ||||
Statlog | 19 | 752 | 13.667 | ? | 0.374 | 0.608 | 0.450 | 0.608 | 0.064 | 0.534 | 0.229 | 0.459 | ||||
Hepatitis | 20 | 126 | 0.399 | ? | 0.096 | 0.265 | 0.102 | 0.265 | 0.160 | 0.538 | 0.101 | 0.265 | ||||
Segment | 20 | 2 310 | 13.096 | ? | 0.721 | 0.012 | 1.056 | 0.545 | 0.685 | 0.764 | 0.846 | 0.764 | ||||
Imports | 22 | 205 | 9.971 | ? | 0.255 | 2.084 | 0.112 | 3.694 | 0.543 | 4.093 | 0.376 | 3.996 | ||||
Meta | 22 | 528 | OT | ? | 0.201 | 25.416 | 0.078 | 25.484 | 11.020 | 28.171 | 9.781 | 28.089 | ||||
Parkinsons | 23 | 195 | 2.165 | ? | 0.058 | 8.015 | 0.044 | 2.915 | 0.190 | 2.180 | 0.141 | 1.357 | ||||
Heart | 23 | 212 | 0.314 | ? | 0.091 | 0.552 | 0.064 | 0.300 | 0.119 | 0.695 | 0.084 | 0.565 | ||||
Horse | 23 | 300 | 2.070 | ? | 0.328 | 0.298 | 0.217 | 0.136 | 0.148 | 0.253 | 0.118 | 0.169 | ||||
Mushroom | 23 | 8 124 | OT | ? | 0.123 | 14.367 | 0.151 | 14.506 | 73.391 | 2.369 | 131.598 | 2.074 | ||||
Autos | 26 | 159 | 13.232 | ? | 0.105 | 2.088 | 0.141 | 3.185 | 0.159 | 2.828 | 0.252 | 2.607 |
1 | PEARL J. Probabilistic reasoning in intelligent systems: networks of plausible inference. San Mateo: Morgan Kaufmann Publishers, 1988. |
2 | ZHAO Y P, CHEN Y T, TU K W, et al Learning Bayesian network structures under incremental construction curricula. Neurocomputing, 2017, 258 (10): 30- 40. |
3 | CHICKERING D M. Learning from data. Berlin: Springer, 1996. |
4 | CHICKERING D M, HECKENMAN D, MEEK C Large-sample learning of Bayesian networks is NP-hard. Journal of Machine Learning Research, 2004, 5 (10): 1287- 1330. |
5 |
SCANAGATTA M, CORANI G, DE CAMPOS C P, et al Approximate structure learning for large Bayesian networks. Machine Learning, 2018, 107 (8−10): 1209- 1227.
doi: 10.1007/s10994-018-5701-9 |
6 |
SCANAGATTA M, SALMERON A, STELLA F A survey on Bayesian network structure learning from data. Progress in Artificial Intelligence, 2019, 8, 425- 439.
doi: 10.1007/s13748-019-00194-y |
7 | KOIVISTO M, SOOD K Exact Bayesian structure discovery in Bayesian networks. Journal of Machine Learning Research, 2004, 5, 549- 573. |
8 | SINGH A P, MOORE A W. Finding optimal Bayesian networks by dynamic programming. Pittsburgh, USA: Carnegie Mellon University, 2005. |
9 | SILANDER T, MYLLYMAKI P A simple approach for finding the globally optimal Bayesian network structure. Proc. of the 22nd Conference on Uncertainty in Artificial Intelligence, 2006, 445- 452. |
10 | MALONE B, YUAN C H Memory-efficient dynamic programming for learning optimal Bayesian networks. Proc. of the 25th AAAI Conference on Artificial Intelligence, 2011, 1057- 1062. |
11 | YUAN C H, MALONE B Learning optimal Bayesian networks: a shortest path perspective. Journal of Artificial Intelligence Research, 2013, 48 (1): 23- 65. |
12 | YUAN C H, MALONE B, WU X J Learning optimal Bayesian networks using A* search. Proc. of the 22nd International Joint Conference on Artificial Intelligence, 2011, 2186- 2191. |
13 | MALONE B, YUAN C H Evaluating anytime algorithms for learning optimal Bayesian networks. Proc. of the 29th Conference on Uncertainty in Artificial Intelligence, 2013, 381- 390. |
14 | MALONE B, YUAN C H, HANSEN E, et al Improving the scalability of optimal Bayesian network learning with external-memory frontier breadth-first branch and bound search. Proc. of the 27th Conference on Uncertainty in Artificial Intelligence, 2011, 479- 488. |
15 | YUAN C H, MALONE B An improved admissible heuristic for learning optimal Bayesian networks. Proc. of the 28th Conference on Uncertainty in Artificial Intelligence, 2012, 924- 933. |
16 | VAN BEEK P, HOFFMANN H F Machine learning of Bayesian networks using constraint programming. Proc. of the 21st International Conference on Principles and Practice of Constraint Programming, 2015, 429- 445. |
17 | CUSSENS J Bayesian network learning with cutting planes. Proc. of the 27th Conference on Uncertainty in Artificial Intelligence, 2011, 153- 160. |
18 | BARLETT M, CUSSENS J Advances in Bayesian network learning using integer programming. Proc. of the 29th Conference on Uncertainty in Artificial Intelligence, 2013, 182- 191. |
19 |
BARTLETT M, CUSSENS J Integer linear programming for the Bayesian network structure learning problem. Artificial Intelligence, 2017, 244, 258- 271.
doi: 10.1016/j.artint.2015.03.003 |
20 | CUSSENS J, JARVISALO M, KORHONEN J H, et al Bayesian network structure learning with integer programming: polytopes, facets and complexity. Journal of Artificial Intelligence Research, 2017, 58 (1): 185- 229. |
21 |
MALONE B, KANGAS K, JARVISALO M, et al Empirical hardness of finding optimal Bayesian network structures: algorithm selection and runtime prediction. Machine Learning, 2018, 107 (1): 247- 283.
doi: 10.1007/s10994-017-5680-2 |
22 |
YANG Y, GAO X G, GUO Z G Finding optimal Bayesian networks by a layered learning method. Journal of Systems Engineering and Electronics, 2019, 30 (5): 946- 958.
doi: 10.21629/JSEE.2019.05.12 |
23 |
WANG Z D, GAO X G, YANG Y, et al Learning Bayesian networks based on order graph with ancestral constraints. Knowledge-Based Systems, 2021, 211, 106515.
doi: 10.1016/j.knosys.2020.106515 |
24 | TAN X Y, GAO X G, WANG Z D, et al Bidirectional heuristic search to find the optimal Bayesian network structure. Neurocomputing, 2021, 426 (2): 35- 46. |
25 |
DE CAMPOS C P, SCANAGATTA M, CORANI G, et al Entropy-based pruning for learning Bayesian networks using BIC. Artificial Intelligence, 2018, 260, 42- 50.
doi: 10.1016/j.artint.2018.04.002 |
26 | CORREIA A H C, CUSSENS J, DE CAMPOS C P On pruning for score-based Bayesian network structure learning. Proc. of the 32nd International Conference on Artificial Intelligence and Statistics, 2020, 2709- 2718. |
27 | MARGARITIS D. Learning Bayesian network model structure from data. Pittsburgh, USA: Carnegie Mellon University, 2003. |
28 |
TSAMARDINOS I, BROWN L E, ALIFERIS C F The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning, 2006, 65 (1): 31- 78.
doi: 10.1007/s10994-006-6889-7 |
29 | TSAMARDINOS I, ALIFERIS C F, STATNIKOV A, et al Algorithms for large scale Markov blanket discovery. Proc. of FLAIRS Conference, 2003, 376- 381. |
30 | ALIFERIS C F, TSAMARDINOS I, STATNIKOV A HITON: a novel Markov blanket algorithm for optimal variable selection. Proc. of American Medical Informatics Association Annual Symposium, 2003, 21- 25. |
31 | TSAMARDINOS I, ALIFERIS C F, STATNIKOV A Time and sample efficient discovery of Markov blankets and direct causal relations. Proc. of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, 673- 678. |
32 | KOLLER D, FRIEDMAN N. Probabilistic graphical models: principles and techniques. Massachusetts: MIT Press, 2009. |
33 |
RISSANEN J Modeling by shortest data description. Automatica, 1978, 14, 465- 471.
doi: 10.1016/0005-1098(78)90005-5 |
34 | SCHWARZ G Estimating the dimension of a model. The Annals of Statistics, 1978, 6 (2): 461- 464. |
35 | BUNTINE W Theory refinement on Bayesian networks. Proc. of the 7th Conference on Uncertainty in Artificial Intelligence, 1991, 52- 60. |
36 | TIAN J A branch-and-bound algorithm for MDL learning Bayesian networks. Proc. of the 16th Conference on Uncertainty in Artificial Intelligence, 2000, 580- 588. |
37 | PERRIER E, IMOTO S, MIYANO S Finding optimal Bayesian network given a super-structure. Journal of Machine Learning Research, 2008, 9 (10): 2251- 2286. |
38 |
HE C C, GAO X G, WAN K F MMOS+ ordering search method for Bayesian network structure learning and its application. Chinese Journal of Electronics, 2020, 29 (1): 147- 153.
doi: 10.1049/cje.2019.11.004 |
39 | ALIFERIS C F, TSAMARDINOS I, STATNIKOV A R, et al Causal explorer: a causal probabilistic network learning toolkit for biomedical discovery. Proc. of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences, 2003, 371- 376. |
40 | BOERLAGE B. Link strength in Bayesian networks. Vancouver, Canada: University of British Columbia, 1992. |
41 |
LIU H, ZHOU S G, LAM W, et al A new hybrid method for learning Bayesian networks: separation and reunion. Knowledge-Based Systems, 2017, 121, 185- 197.
doi: 10.1016/j.knosys.2017.01.029 |
[1] | Fang YE, Ying MAO, Yibing LI, Xinrui LIU. Target threat estimation based on discrete dynamic Bayesian networks with small samples [J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1135-1142. |
[2] | Yu YANG, Xiaoguang GAO, Zhigao GUO. Finding optimal Bayesian networks by a layered learning method [J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 946-958. |
[3] | Xiaoguang GAO, Yu YANG, Zhigao GUO. Learning Bayesian networks by constrained Bayesian estimation [J]. Journal of Systems Engineering and Electronics, 2019, 30(3): 511-524. |
[4] | Chuchao HE, Xiaoguang GAO, Zhigao GUO. Structure learning on Bayesian networks by finding the optimal ordering with and without priors [J]. Journal of Systems Engineering and Electronics, 2018, 29(6): 1209-1227. |
[5] | Ruohai Di, Xiaoguang Gao, and Zhigao Guo. Learning Bayesian network parameters under new monotonic constraints#br# [J]. Journal of Systems Engineering and Electronics, 2017, 28(6): 1248-1255. |
[6] | Binghua Song, Zhongbao Zhou, Chaoqun Ma, Jinglun Zhou, and Shaofeng Geng. Reliability analysis of monotone coherent multi-state systems based on Bayesian networks [J]. Journal of Systems Engineering and Electronics, 2016, 27(6): 1326-1335. |
[7] | Zhiqiang Cai, Shubin Si, Shudong Sun, and Hongyan Dui. Learning Bayesian network structure with immune algorithm [J]. Journal of Systems Engineering and Electronics, 2015, 26(2): 282-291. |
[8] | Zhengdao Zhang, Jinlin Zhu, and Feng Pan. Fault detection and diagnosis for data incomplete industrial systems with new Bayesian network approach [J]. Journal of Systems Engineering and Electronics, 2013, 24(3): 500-. |
[9] | Chunfeng Wang, Sanyang Liu, and Mingmin Zhu. Bayesian network learning algorithm based on unconstrained optimization and ant colony optimization [J]. Journal of Systems Engineering and Electronics, 2012, 23(5): 784-790. |
[10] | Mingmin Zhu, Sanyang Liu, Youlong Yang, and Kui Liu. Using junction trees for structural learning of Bayesian networks [J]. Journal of Systems Engineering and Electronics, 2012, 23(2): 286-292. |
[11] | Li Wang, and Mingzhe Wang. Modeling of combined Bayesian networks and cognitive framework for decision-making in C2 [J]. Journal of Systems Engineering and Electronics, 2010, 21(5): 812-820. |
[12] | Lian Guangyao, Huang Kaoli, Chen Jianhui & Wei Zhonglin. Study of testability measurement method for equipment based on Bayesian network model [J]. Journal of Systems Engineering and Electronics, 2009, 20(5): 1017-1023. |
[13] | Tang Zheng & Gao Xiaoguang. Research on the self-defence electronic jamming decision-making based on the discrete dynamic Bayesian network [J]. Journal of Systems Engineering and Electronics, 2008, 19(4): 702-708. |
[14] | Chen Fei, Wang Xiufeng & Rao Yimei. Learning Bayesian networks using genetic algorithm [J]. Journal of Systems Engineering and Electronics, 2007, 18(1): 142-147. |
[15] | Shi Zhifu , Zhang An & Wang Anli. Target distribution in cooperative combat based on Bayesian optimization algorithm* [J]. Journal of Systems Engineering and Electronics, 2006, 17(2): 339-342. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||