Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (5): 1083-1096.doi: 10.23919/JSEE.2021.000093
• ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Zhengliang ZHU1,3(), Degui YANG2,*(), Junchao ZHANG2(), Feng TONG1,3
Received:
2020-09-30
Online:
2021-10-18
Published:
2021-11-04
Contact:
Degui YANG
E-mail:zzlcsu@foxmail.com;ah_gui@sina.com;zhangjunchao@csu.edu.cn
About author:
Supported by:
Zhengliang ZHU, Degui YANG, Junchao ZHANG, Feng TONG. Dataset of human motion status using IR-UWB through-wall radar[J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1083-1096.
Table 1
Parameters of IR-UWB through-wall radar"
Parameter | Value |
Distance of transceiver antennas/m | 0.15 |
Operating mode | Impulse radio |
Central frequency/MHz | 500 |
Pulse width/ns | 2 |
Sampling points of signal | |
Sampling interval by equivalent sampling/ps | 200 |
Sampling numbers in single point | |
Pulse repetition frequency/kHz | |
ADC real-time sampling rate/(kSa/s) | 400 |
Table 4
Parameters setup of CNN"
Layer | Parameter | Value | Parameter’s number |
Input layer | Input size | 768×32 | ? |
Convolutional layer (C1) | Filter number | 16 | 160 |
Activation function | Relu | ||
Kernel size | 3×3 | ||
Convolutional layer (C2) | Filter number | 32 | 4640 |
Activation function | Relu | ||
Kernel size | 3×3 | ||
Convolutional layer (C3) | Filter number | 64 | 18496 |
Activation function | Relu | ||
Kernel size | 3×3 | ||
Convolutional layer (C4) | Filter number | 128 | 32896 |
Activation function | Relu | ||
Kernel size | 2×2 | ||
Pooling layer (P5) | Step | 2 | ? |
Pooling size | 2×2 | ||
Full connected layer (F6) | Number of neurons | 128 | 94126208 |
Activation function | Relu | ||
Full connected layer (F7) | Number of neurons | 64 | 8256 |
Activation function | Relu | ||
Output layer | Number of neurons | 3 | 195 |
Classifier | Softmax |
1 | BARANOSKI E J Through-wall imaging: historical perspective and future directions. Journal of the Franklin Institute, 2008, 345 (6): 556- 569. |
2 | WU S Y, TAN K, XIA Z H, et al Improved human respiration detection method via ultra-wideband radar in through-wall or other similar conditions. IET Radar, Sonar & Navigation, 2016, 10 (3): 468- 476. |
3 |
TIVIVE F H C, BOUZERDOUM A, AMINM G A subspace projection approach for wall clutter mitigation in through-the-wall radar imaging. IEEE Trans. on Geoscience and Remote Sensing, 2015, 53 (4): 2108- 2122.
doi: 10.1109/TGRS.2014.2355211 |
4 |
LE M, VAN NGUYEN B Multivariate correlation of higher harmonics for heart rate remote measurement using UWB impulse radar. IEEE Sensors Journal, 2020, 20 (4): 1859- 1866.
doi: 10.1109/JSEN.2019.2950635 |
5 | YANG D, ZHU Z, LIANG B. Vital sign signal extraction method based on permutation entropy and EEMD algorithm for ultra-wideband radar. IEEE Access, 2019, 7: 178879–178890. |
6 |
GURBUZ S Z, AMIN M G Radar-based human-motion recognition with deep learning: promising applications for indoor monitoring. IEEE Signal Processing Magazine, 2019, 36 (4): 16- 28.
doi: 10.1109/MSP.2018.2890128 |
7 |
MA Y Y, LIANG F L, WANG P F, et al An accurate method to distinguish between stationary human and dog targets under through-wall condition using UWB radar. Remote Sensing, 2019, 11 (21): 2571.
doi: 10.3390/rs11212571 |
8 |
MA Y Y, QI F G, WANG P F, et al Multiscale residual attention network for distinguishing stationary humans and common animals under through-wall condition using ultra-wideband radar. IEEE Access, 2020, 8, 121572- 121583.
doi: 10.1109/ACCESS.2020.3006834 |
9 |
JIANG L B, ZHOU X, CHE L, et al Feature extraction and reconstruction by using 2D-VMD based on carrier-free UWB radar application in human motion recognition. Sensors, 2019, 19 (9): 1962.
doi: 10.3390/s19091962 |
10 | JIANG L B, WEI G M, CHE L Human motion recognition method by radar based on CNN. Computer Applications and Software, 2019, 36 (11): 174- 180, 240. |
11 | JIANG L B, LI C, CHE L Human motion recognition by-ultra-wide band radar. Journal of Electronic Measurement and Instrumentation, 2018, 32 (1): 129- 133. |
12 | BRYAN J D, KWON J, LEE N, et al Application of ultra-wide band radar for classification of human activities. IET Radar, Sonar & Navigation, 2012, 6 (3): 172- 179. |
13 |
QI F G, LIANG F L, LV H, et al Detection and classification of finer-grained human activities based on stepped-frequency continuous-wave through-wall radar. Sensors, 2016, 16 (6): 885.
doi: 10.3390/s16060885 |
14 |
QI F G, LV H, LIANG F L, et al MHHT-based method for analysis of micro-Doppler signatures for human finer-grained activity using through-wall SFCW radar. Remote Sensing, 2017, 9 (3): 260.
doi: 10.3390/rs9030260 |
15 |
DU H, JIN T, HE Y, et al Segmented convolutional gated recurrent neural networks for human activity recognition in ultra-wideband radar. Neurocomputing, 2020, 396, 451- 464.
doi: 10.1016/j.neucom.2018.11.109 |
16 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2009: 248–255. |
17 |
DU H, JIN T, SONG Y P, et al Unsupervised adversarial domain adaptation for micro-Doppler based human activity classification. IEEE Geoscience and Remote Sensing Letters, 2020, 17 (1): 62- 66.
doi: 10.1109/LGRS.2019.2917301 |
18 |
LANG Y, WANG Q, YANG Y, et al Unsupervised domain adaptation for micro-Doppler human motion classification via feature fusion. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (3): 392- 396.
doi: 10.1109/LGRS.2018.2873776 |
19 |
WANG W, ZHANG M, ZHANG L Classification of data stream in sensor network with small samples. IEEE Internet of Things Journal, 2019, 6 (4): 6018- 6025.
doi: 10.1109/JIOT.2018.2867649 |
20 |
LI Y L, WANG W, JIANG Y Through wall human detection under small samples based on deep learning algorithm. IEEE Access, 2018, 6, 65837- 65844.
doi: 10.1109/ACCESS.2018.2877730 |
21 | CMU graphics lab motion capture database. http://mocap.cs.cmu.edu/. |
22 |
LIANG X L, ZHANG H, YE S B, et al Improved denoising method for through-wall vital sign detection using UWB impulse radar. Digital Signal Processing, 2018, 74, 72- 93.
doi: 10.1016/j.dsp.2017.12.004 |
23 | FEI Y. Ultra wideband radar theory and technology. Beijing: National Defense Industry Press, 2010. (in Chinese) |
24 | LI X, QIAO D Y, LI Y, et al. A novel through-wall respiration detection algorithm using UWB radar. Proc. of the 35th IEEE Annual International Conference on Engineering in Medicine and Biology Society, 2013: 1013–1016. |
25 |
YOUNGWOOK K, HAO L Human activity classification based on micro-Doppler signatures using a support vector machine. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47 (5): 1328- 1337.
doi: 10.1109/TGRS.2009.2012849 |
26 | ZHANG F, LIANG B G, RONG R I, et al UWB radar life detector system design and test. Fire Science and Technology, 2016, 35 (7): 967- 969. |
27 | ZHU Z L, LIANG B G, YANG D G, et al Research, fabrication and application of IR-UWB through wall radar system. Transducer and Microsystem Technologies, 2020, 39 (4): 103- 106. |
28 |
WANG G, AMIN M G Imaging through unknown walls using different standoff distances. IEEE Trans. on Signal Processing, 2006, 54 (10): 4015- 4025.
doi: 10.1109/TSP.2006.879325 |
29 | ZHOU Z. Machine learning. Beijing: Tsinghua University Press, 2016. (in Chinese) |
30 |
LECUN Y Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86 (11): 2278- 2323.
doi: 10.1109/5.726791 |
31 |
LECUN Y, BOSER B, DENKER J Backpropagation applied to handwritten zip code recognition. Neural Computation, 1989, 1 (4): 541- 551.
doi: 10.1162/neco.1989.1.4.541 |
32 |
KIM Y, MOON T Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (1): 8- 12.
doi: 10.1109/LGRS.2015.2491329 |
33 |
HUBEL D H, WIESEL T N Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 1962, 160 (1): 106- 154.
doi: 10.1113/jphysiol.1962.sp006837 |
34 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition. Proc. of the International Conference on Learning Representations, 2015: arXiv1409.1556v6. |
35 | VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008: arXiv: 2108.01301. |
36 | ZHANG Y, ZHU Y P, CHENG Y Q, et al Human target radar echo signal analysis based on micro-Doppler characteristic. Signal Processing, 2009, 25 (10): 1616- 1623. |
37 | HE F. Researches on key techniques of wide band/ultra-wide band radar detection and signature extraction of locomotor human targets. Changsha: National University of Defense Technology, 2011. (in Chinese) |
[1] | Lei HU, Guoxing YI, Chao HUANG. A sparse algorithm for adaptive pruning least square support vector regression machine based on global representative point ranking [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 151-162. |
[2] | Wantian WANG, Ziyue TANG, Yichang CHEN, Yongjian SUN. Parity recognition of blade number and manoeuvre intention classification algorithm of rotor target based on micro-Doppler features using CNN [J]. Journal of Systems Engineering and Electronics, 2020, 31(5): 884-889. |
[3] | Binquan LI, Xiaohui HU. Effective distributed convolutional neural network architecture for remote sensing images target classification with a pre-training approach [J]. Journal of Systems Engineering and Electronics, 2019, 30(2): 238-244. |
[4] | Baojun ZHAO, Boya ZHAO, Linbo TANG, Wenzheng WANG, Chen WU. Multi-scale object detection by top-down and bottom-up feature pyramid network [J]. Journal of Systems Engineering and Electronics, 2019, 30(1): 1-12. |
[5] | Liangkui LIN, Shaoyou WANG, Zhongxing TANG. Using deep learning to detect small targets in infrared oversampling images [J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 947-952. |
[6] | Bendong Zhao, Huanzhang Lu, Shangfeng Chen, Junliang Liu, and Dongya Wu. Convolutional neural networks for time series classification [J]. Systems Engineering and Electronics, 2017, 28(1): 162-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||