Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (5): 1152-1166.doi: 10.23919/JSEE.2021.000099
• SYSTEMS ENGINEERING • Previous Articles Next Articles
Yunpeng HU1(), Kebo LI1(), Yan’gang LIANG1(), Lei CHEN2,*()
Received:
2020-04-03
Online:
2021-10-18
Published:
2021-11-04
Contact:
Lei CHEN
E-mail:huyunpeng14@nudt.edu.cn;likeboreal@nudt.edu.cn;liangyg@nudt.edu.cn;chenl@nudt.edu.cn
About author:
Supported by:
Yunpeng HU, Kebo LI, Yan’gang LIANG, Lei CHEN. Review on strategies of space-based optical space situational awareness[J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1152-1166.
Table 1
Parameters of some proposed SBO surveillance missions"
Program | Instrument orbit | Mission | Detector | Mass/kg |
SBV MSX [ | 898-km altitude, near SSO | Observing objects from LEO to beyond GEO | CCD (FOV: 5.6°×1.4°) | 2812 for launch |
SBSS Block-10 [ | SSO | Observing objects from LEO to beyond GEO | Heritage from SBV | <1100 for launch |
STARE A and B [ | Elliptical LEO | Detecting debris in LEO | COMS (FOV: 2.08°×1.67°) | <10 for launch |
GSSAP [ | Around GEO | Observing objects GEO | ? | ? |
ORS-5 [ | 600-km altitude, EO | Scanning GEO belt | CCD | 140 for satellite |
XSS-10 [ | 800-km altitude, 39.8° inclination | Proximity observation of LEO objects | CCD | 31 for satellite |
MiTEx [ | GEO | Proximity observation of GEO objects | ? | 225 for satellite |
MOST [ | 830-km altitude, SSO | Measuring bright star | CCD (FOV: 0.23°×0.8°) | <100 for satellite |
Sapphire [ | 786-km altitude, SSO | Observing objects from LEO to GEO | CCD (FOV: 1.4°×1.4°) | 150 for satellite |
NEOSSat [ | 780-km altitude, SSO | Observing GEO objects and near Earth asteroids | CCD (FOV: 0.85°×0.85°) | 73 for satellite |
ESA’s SBSS Demonstrator [ | 700-km altitude, SSO | Observing objects from LEO to beyond GEO | CMOS (FOV: 3°×3°) CCD (FOV: 2.74°×2.74°) | ≤150 for launch |
Table 2
Performance of several typical strategies for observing GEO objects in a day on December"
Strategy | Size of FOV | Mean visibility period/s | Mean visibility times |
Passive | 2°×6° | 100?200 | 1?2 |
6°×2° | 200?400 | 1?2 | |
Leak proof (one fence) | 2°×2° | 400?500 | 1 |
6°×2° | 1400?1500 | 1 | |
EO-based (7 r /d) | 6°×2° | 174 | 2?3 |
EO-based (10 r /d) | 6°×2° | 125 | 3?4 |
1 |
MUELHAUPT T J, SORGE M E, MORIN J, et al Space traffic management in the new space era. Journal of Space Safety Engineering, 2019, 6 (2): 80- 87.
doi: 10.1016/j.jsse.2019.05.007 |
2 |
SELVA D, GOLKAR A, KOROBOVA O, et al Distributed Earth satellite systems: what is needed to move forward. Journal of Aerospace Information System, 2017, 14 (8): 412- 439.
doi: 10.2514/1.I010497 |
3 | FOUST J SpaceX's space-Internet woes: despite technical glitches, the company plans to launch the first of nearly 12, 000 satellites in 2019. IEEE Spectrum, 2018, 56 (1): 50- 51. |
4 | RADTKE J, KEBSCHULL C, STOLL E Interactions of the space debris environment with mega constellations — using the example of the OneWeb constellation. Acta Astronautica, 2017, l31, 55- 68. |
5 | MATNEY M J. Toward a comprehensive GEO debris measurement strategy. Proc. of the 54th International Astronautical Congress, 2003: IAC-03-IAA.5.1.03. |
6 | The NASA Orbital Program Office. Satellite collision leaves significant debris clouds. The Orbital Debris Quarterly News, 2009, 13(2): 1–4. https://orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv13i2.pdf. |
7 | KESSLER D J, COUR-PALAIS B G Collision frequency of artificial satellites: the creation of a debris belt. Journal of Geophysical Research, 1978, 83 (A6): 26- 37. |
8 |
LIOU J C, JOHNSON N L Risk in space from orbiting debris. Science, 2006, 311 (5759): 340- 341.
doi: 10.1126/science.1121337 |
9 | Inter-agency space debris coordination committee. IADC Space Debris Mitigation Guidelines, 2007, IADC-02-01. |
10 | ABBOT R I, WALLACE T P Decision support in space situational awareness. Lincoln Laboratory Journal, 2007, 16 (2): 297- 335. |
11 | WOOTTON S. Enabling GEODSS for space situational awareness. Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2016: 28. |
12 | KRAG H, KLINKRAD H, SCHILDKNECHT T, et al. Improving GEO space debris environment modelling with the help of ESA space debris telescope observations. Proc. of the 37th COSPAR Scientific Assembly, 2008: PEDAS1-0010-08. |
13 | MORREALE B, BESSELL T, RUTTEN M, et al. Australian space situational awareness capability demonstrations. Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2017: 63. |
14 | MOLOTOV I, AGAPOV V, AKIM E. Future ISON development from points of view of scientific and applied researches. Proc. of the 38th COSPAR Scientific Assembly, 2010: PEDAS1-0007-10. |
15 | STOKES G H, VON BRAUN C, SRIDHARAN R, et al The spaced-based visible program. Lincoln Laboratory Journal, 1998, 11 (2): 205- 238. |
16 |
SHARMA J Space-based visible space surveillance performance. Journal Guidance Control and Dynamics, 2000, 23 (1): 153- 158.
doi: 10.2514/2.4503 |
17 |
VON BRAUN C, SHARMA J, GAPOSCHKIN E M Space-based visible metric accuracy. Journal Guidance Control and Dynamics, 2000, 23 (1): 175- 181.
doi: 10.2514/2.4508 |
18 | SHARMA J, STOKES G H, VON BRAUN C, et al Toward operational space-based space surveillance. Lincoln Laboratory Journal, 2002, 13 (2): 309- 334. |
19 | Ball Aerospace. Space based space surveillance. Ball Aerospace Technical Report, 2016. https://www.ball.com/aerospace/getmedia/cda4a340-8088-47f4-abbb-6a19bb3f858d/D1910__SBSS_20210818_FINAL.pdf.aspx?ext=.pdf |
20 | LOZADA V C. Space-based telescope for the actionable refinement of ephemeris systems and test engineering. California: Naval Postgraduate School, 2011. |
21 |
SIMMS L M, DE VRIES M, RIOT V, et al Space-based telescopes for actionable refinement of ephemeris pathfinder mission. Optical Engineering, 2012, 51 (1): 011004.
doi: 10.1117/1.OE.51.1.011004 |
22 | FURY K. Launching traffic cameras into space. LLNL Science and Technology Review, 2012, April/May: 4–10. |
23 | XU Y L, ZHOU H J, DAI H Y Design of GEO helix tourist orbit based on perturbation compensation. AIP ConferenceProceedings, 2017, 1839 (1): 020084. |
24 | DAVIS T M. Operationally responsive space – the way forward. Proc. of the 29th Annual AIAA/USU Conference on Small Satellites, 2015: SSC15-VII-4. |
25 | DAVIS T M, MELANSON D. XSS-10 micro-satellite flight demonstration. Proc. of the Georgia Tech Space Systems Engineering Conference, 2005: 8–10. |
26 | OSBORN M, CLAUSS C, GORIN B, et al. Micro-satellite technology experiment (MiTEx) upper stage propulsion system development. Proc.of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2007: 5434. |
27 | SCOTT R L, WALLACE B, BEDARD D. Space-based observations of satellites from the MOST microsatellite. Ottawa: Defence R&D Canada Technical Report, 2006. |
28 | MASKELL C P, ORAM L. Sapphire: Canada’s answer to space-based surveillance of orbital objects. Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2008: E5. |
29 | LEITH R, HEMPHILL I. Sapphire: a small satellite system for the surveillance of space. Proc. of the 24th Annual AIAA/USU Conference on Small Satellites, 2010: SSC10-II. |
30 | SCOTT A, HACKETT J. MAN K. On-orbit results for Canada’s Sapphire optical payload. Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2013: E41. |
31 | SCOTT R, WALLACE B, SALE M, et al. Toward microsatellite-based space situational awareness. Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2013: E40. |
32 | SCOTT R, THORSTEINSON S. Key findings from the NEOSSat space-based SSA microsatellite mission. Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2018: 89–103. |
33 | ABBASI V, THORSTEINSON S, BALAM D, et al. The NEOSSat experience: 5 years in the life of Canada's space surveillance telescope. Proc. of the 1st NEO and Debris Detection Conference, 2019: 494. |
34 | FLOHRER T, KRAG H. ESA's SSA programme: activities in space surveillance and tracking. Proc. of the 18th Space Surveillance Workshop, Advanced Maui Optical and Space Surveillance Technologies Conference, 2017: 38. |
35 | SHILHA J, SCHILDKNECHT T, HINZE A, et al. Capability of space-based space surveillance system to detect and track objects in GEO, MEO and LEO Orbits. Proc. of the 65th International Astronautical Congress, 2014: IAC-14-A6.1.1. |
36 | UTZMANN J, WAGNER A, SILHA J, et al. Space-based space surveillance and tracking demonstrator: mission and system design. Proc. of the 65th International Astronautical Congress, 2014: IAC-14-A6.7.5. |
37 | XU W. Space-based observation mission research of GEO targets. Changsha: National University of Defense Technology, 2014. (in Chinese) |
38 | DAI K X, FENG Z L, WAN X R Study on developments of space situation awareness system in Russia. Journal of CAEIT, 2016, 11 (3): 233- 238. |
39 | SKULLNEY, W E, KREITZ H M, HAROLD M J, et al Structural design of the MSX spacecraft. Johns Hopkins APL Technical Digest, 1996, 17 (1): 59- 76. |
40 | HAN Y, SUN H Y, FENG J G, et al Analysis of the optical scattering characteristics of different types of space targets. Measurement Science and Technology, 2014, 25 (7): 1- 10. |
41 | DU J L, CHEN J Y, LI B, et al Tentative design of SBSS constellations for LEO debris catalog maintenance. Acta Astronautica, 2019, l55, 379- 388. |
42 |
HU Y P, HUANG J Y, CHEN L Space-based visible observation strategy for beyond-LEO objects based on an equatorial LEO satellite with multi-sensors. Advances in Space Research, 2017, 59 (7): 1751- 1762.
doi: 10.1016/j.asr.2017.01.018 |
43 | SCHILDKNECHT T, MUSCI R, PLONER M. An optical search for small-size debris in GEO and GTO. Proc. of the 2003 AMOS Technical Conference, 2003: 1–11. |
44 |
HU Y P, LI K B, CHEN L, et al A novel space-based observation strategy for GEO objects based on daily pointing adjustment of multi-sensors. Advances in Space Research, 2016, 58 (4): 505- 513.
doi: 10.1016/j.asr.2016.05.023 |
45 | DIAO H F, LI Z The system design of the space-based visible surveillance system for GEO belt observation experimental. Aerospace Control, 2012, 30 (6): 66- 70. |
46 |
FLOHRER T, KRAG H, KLINKRAD H, et al Feasibility of performing space surveillance tasks with a proposed space-based optical architecture. Advances in Space Research, 2011, 47 (6): 1029- 1042.
doi: 10.1016/j.asr.2010.11.021 |
47 | SHARMA J, WISEMAN A J, ZOLLINGER G Improving space surveillance with space-based visible sensor. Lincoln Laboratory Journal, 2001, 13 (2): 223- 236. |
48 | WU Y H, WU J, WANG X, et al Design of a space-based optical surveillance constellation based on observation of pinch point regions. Journal of Spacecraft TT&C Technology, 2014, 33 (5): 410- 415. |
49 | WANG X Y, AN W, WU Y H, et al. Research on space-based optical surveillance's observation strategy of geostationary-orbit's pitch point region. Proc. of the Photoelectronic Technology Committee of the Chinese Society of Astronautics, 2014: Part I-95211Q. |
50 | TANG Y, ZHONG W N, SHOU J M, et al Constellation design for geosynchronous belt surveillance system based on the SBV sensor. Chinese Journal of Space Science, 2015, 35 (1): 94- 103. |
51 | DIAO H F, LI Z The research on the pointing strategy of space-based visible space surveillance. Aerospace Control, 2011, 29 (6): 39- 43. |
52 |
HU Y P, CHEN L, HUANG J Y Space-based pseudo-fixed latitude observation mode based on the characteristics of geosynchronous orbit belt. Acta Astronautica, 2017, 137, 31- 37.
doi: 10.1016/j.actaastro.2017.03.031 |
53 | OSWALD M, STABROTH S, WAGNER A. Satellite-based solutions for beyond-LEO space surveillance. Proc. of the 5th European Conference on Space Debris, 2009: 9. |
54 | OLMEDO E, SANCHEZ N, RAMOS-LERATE M. Orbits and pointing strategies for space-based telescopes into a European space surveillance system. Proc. of the 5th European Conference on Space Debris, 2009: 26. |
55 | SANCHEZ N, CASAL E O, RAMOS-LERATE M, et al. Space based optical images within a space surveillance system. Proc. of the 59th International Astronautical Congress, 2008: IAC-08-A6.5.6. |
56 | MORRIS K, RICE C, LITTLE E. Relative cost and performance comparison of GEO space situational awareness architectures. Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2014: E82. |
57 |
YATES J M, SPANBAUER B W, BLACK J T Geostationary orbit development and evaluation for space situational awareness. Acta Astronautica, 2012, 81, 256- 272.
doi: 10.1016/j.actaastro.2012.05.011 |
58 |
DU J L, LEI X X, SANG J Z A space surveillance satellite for cataloging high-altitude small debris. Acta Astronautica, 2019, 157, 268- 275.
doi: 10.1016/j.actaastro.2019.01.003 |
59 |
LUPO R, ALBANESE C, BETTINELLI D, et al Lighthouse: a space-based mission concept for the surveillance of geosynchronous space debris from low earth orbit. Advances in Space Research, 2018, 62 (12): 3305- 3317.
doi: 10.1016/j.asr.2018.03.005 |
60 | NALLAPU R T, RAVINDRAN A, KALITA H, et al. Smart camera system on-board a CubeSat for space-based object reentry and tracking. Proc. of the 2018 IEEE/ION Position, Location and Navigation Symposium, 2018: 17823318. |
61 | CHEN B E, XIONG J P The platform design of space-based optical observations of space debris. Chinese Astronomy and Astrophysics, 2017, 41 (2): 109- 124. |
62 |
SNOW A C, WORTHY J L, DEN BOER A, et al Optimization of CubeSat constellations for uncued electrooptical space object detection and tracking. Journal of Spacecraft and Rockets, 2016, 53 (3): 401- 419.
doi: 10.2514/1.A33386 |
63 |
GRUNTMAN M Passive optical detection of submillimeter and millimeter size space debris in low Earth orbit. Acta Astronautica, 2014, 105, 156- 170.
doi: 10.1016/j.actaastro.2014.08.022 |
64 | LIU J, ZHANG H, HE M, et al Overview and analysis of space-based space surveillance system. Aerospace Electronic Warfare, 2019, 35 (4): 60- 64. |
65 | TANG Y, WU M P, FU X F A method of correlation analysis for space-based GEO object surveillance. Science China Technology Science, 2012, 42 (6): 1749- 1756. |
66 | JIA B, BLASCH E, PHAM K D, et al. Multiple space object tracking via a space-based optical sensor. Proc. of the 2016 IEEE Aerospace Conference, 2016: 16121698. |
67 |
SIMINSKI J A, MONTENBRUCK O, FIEDLER H, et al Short-arc tracklet association for geostationary objects. Advances in Space Research, 2014, 53 (8): 1184- 1194.
doi: 10.1016/j.asr.2014.01.017 |
68 |
LEI X X, WANG K P, ZHANG P, et al A geometrical approach to association of space-based very short-arc LEO tracks. Advances in Space Research, 2018, 62 (3): 542- 553.
doi: 10.1016/j.asr.2018.04.044 |
69 | REIHS B, VANANTI A, SIMINSKI J. Analysing the correlation performance of ESA's planned space-based GEO surveillance mission. Proc. of the 70th International Astronautical Congress, 2019: IAC-19-A6.9.2.x50602. |
70 | VALLADO D A. Evaluating gooding angles-only orbit determination of space based space surveillance measurements. Proc. ofthe AAS Born Symposium, 2010: USR10-S45. |
71 |
FENG F, ZHANG Y S, LI H N, et al A novel space-based orbit determination method based on distribution regression and its sparse solution. IEEE Access, 2019, 7, 133203- 133217.
doi: 10.1109/ACCESS.2019.2940893 |
72 | SANG J Z, LEI X X, ZHANG P, et al. Orbital solutions to LEO-to-LEO angles-only very short-arc tracks. Proc. of the 7th European Conference on Space Debris, 2017: SDC7-1065. |
73 | ZHANG Y, GAN Q B, YUAN H, et al Design of space-based surveillance distributed simulation system for space targets. Journal of System Simulation, 2020, 32 (4): 620- 626. |
74 | LIU Y, YU A X, ZHANG Z H, et al Design of fusion systems for space target tracking. Systems Engineering and Electronics, 2011, 33 (9): 1941- 1947. |
75 | WU P L, ZHOU Y, LI X X. Space-based passive tracking of non-cooperative space target using robust filtering algorithm. Proc IMechE Part I: J Systems and Control Engineering, 2016, 230(6): 551–561. |
76 | RAIHAN A.V D, CHAKRAVORTY S An unscented Kalman-particle hybrid filter for space object tracking. The Journal of the Astronautical Sciences, 2018, 65 (4): 111- 134. |
77 |
ZHANG H W, XIE J W, GE J A, et al Adaptive strong tracking square-root cubature Kalman filter for maneuvering aircraft. IEEE Access, 2018, 6, 10052- 10061.
doi: 10.1109/ACCESS.2018.2808170 |
78 |
HU Y P, ZHANG X T, CHEN L Strategy design and sensor scheduling for optical navigation of low Earth orbit satellites. IEEE Sensors Journal, 2018, 18 (23): 9802- 9811.
doi: 10.1109/JSEN.2018.2871805 |
79 |
LI N, XU Y J, BASSET G, et al Tracking the trajectory of space debris in close proximity via a vision-based method. Journal of Aerospace Engineering, 2014, 27 (2): 238- 248.
doi: 10.1061/(ASCE)AS.1943-5525.0000265 |
80 |
FELICETTI L, EMAMI M R A multi-spacecraft formation approach to space debris surveillance. Acta Astronautica, 2016, 127, 491- 504.
doi: 10.1016/j.actaastro.2016.05.040 |
81 |
JIA B, PHAM K, BLASCH E, et al Cooperative space object tracking using space-based optical sensors via consensus-based filters, IEEE Trans. on Aerospace and Electronic Systems, 2016, 52 (4): 1908- 1935.
doi: 10.1109/TAES.2016.140506 |
82 |
HU C, LIN H S, LI Z H, et al Kullback-leibler divergence based distributed cubature Kalman filter and its application in cooperative space object tracking. Entropy, 2018, 20 (2): 116.
doi: 10.3390/e20020116 |
83 |
CHEN H, WANG J N, WANG C Y, et al Composite weighted average consensus filtering for space object tracking. Acta Astronautica, 2020, 168, 69- 79.
doi: 10.1016/j.actaastro.2019.06.033 |
84 |
HU Y P, SU W S, CHEN L, et al Cooperative space object tracking via universal Kalman consensus filter. Acta Astronautica, 2019, 160, 343- 352.
doi: 10.1016/j.actaastro.2019.03.080 |
85 | OLFATI-SABER R. Distributed Kalman filtering for sensor networks. Proc. of the 46th IEEE Conference on Decision and Control, 2007: 9885401. |
86 | OLFATI-SABER R. Kalman-consensus filter: optimality, stability, and performance. Proc. of the 48th IEEE Conference on Decision and Control, 2009: 11148804. |
87 | ZATEZALO A, EL-FALLAH A, MAHLER R, et al. Joint search and sensor management for geosynchronous satellites. Proc. of the SPIE, 2008: 6968. |
88 | LUO Z, ZENG G Space objects detection in video satellite images using improved MTI algorithm. Opto-Electronic Engineering, 2018, 45 (8): 180048. |
89 |
ZHANG H P, WANG P R, ZHANG C, et al A comparable study of CNN-based single image super-resolution for space-based imaging sensors. Sensors, 2019, 19 (14): 3234.
doi: 10.3390/s19143234 |
90 |
SPILLER D, MAGIONAMI E, SCHIATTARELLA V, et al On-orbit recognition of resident space objects by using star trackers. Acta Astronautica, 2020, 177, 478- 496.
doi: 10.1016/j.actaastro.2020.08.009 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||