Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (1): 28-37.doi: 10.23919/JSEE.2022.000004
• ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Zhuxian ZHANG1,2(), Yu ZHENG2(), Linhua ZHENG1,*(), Peidong ZHU2()
Received:
2020-12-15
Accepted:
2021-11-29
Online:
2022-01-18
Published:
2022-02-22
Contact:
Linhua ZHENG
E-mail:zxzhang@ccsu.edu.cn;y_zheng170@sina.com;lhzheng131@sohu.com;pdzhu@nudt.edu.cn
About author:
Supported by:
Zhuxian ZHANG, Yu ZHENG, Linhua ZHENG, Peidong ZHU. Range resolution and sampling frequency trade-off for GPS passive radar[J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 28-37.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Computation in imaging processing"
Imaging step | Times of multiplication | Times of addition/subtraction | Total |
Range correlation operator | M×M | M(M ? 1) | M(2M ? 1) |
Secondary order differentiation operator | 0 | 2M | 2M |
Generating reply factor in carrier phase recovery | 0 | M | M |
Recover process in carrier phase recovery | 0 | M | M |
Total operations | ? | ? | M(2M ? 1) + 4M |
1 | FRNTI P, MARIESCU-ISTODOR R. Averaging GPS segments competition 2019. Pattern Recognition, 2021, 112: 107730. |
2 | ZHUANG X S, WANG L Moving target imaging method for passive radar applicable to non-cooperative illumination source. Systems Engineering and Electronics, 2015, 37 (3): 560- 565. |
3 | BALASUNRAMANIAM R, RUF C. Characterization of rain impact on L-band GNSS-R ocean surface measurements. Remote Sensing of Environment, 2020, 239: 111607. |
4 |
GEREMIA-NIEVINSKI F, HOBIGER T, HAAS R, et al SNR-based GNSS reflectometry for coastal sea-level altimetry: results from the first IAG inter-comparison campaign. Journal of Geodesy, 2020, 94 (8): 70.
doi: 10.1007/s00190-020-01387-3 |
5 |
PAN Y L, REN C, LIANG Y J, et al Inversion of surface vegetation water content based on GNSS-IR and MODIS data fusion. Satellite Navigation, 2020, 1 (1): 21.
doi: 10.1186/s43020-020-00021-z |
6 | YUEH S H, SHAH R, CHAUBELL M J, et al. A semiempirical modeling of soil moisture, vegetation, and surface roughness impact on CYGNSS reflectometry data. IEEE Trans. on Geoscience and Remote Sensing, 2020. DOI: 10.1109/TGRS.2020.3035989. |
7 | ZHANG Z Y, GUO F, ZHANG X H. Triple-frequency multi-GNSS reflectometry snow depth retrieval by using clustering and normalization algorithm to compensate terrain variation. GPS Solutions, 2020, 24(2): 52. |
8 | MUNOZMARTIN J F, PEREZ A, CAMPS A, et al. Snow and ice thickness retrievals using GNSS-R: preliminary results of the MOSAiC experiment. Remote Sensing, 2020, 12(24): 4038. |
9 |
STEINER L, MEINDL M, MARTY C, et al Impact of GPS processing on the estimation of snow water equivalent using refracted GPS signals. IEEE Trans. on Geoscience and Remote Sensing, 2020, 58 (1): 123- 135.
doi: 10.1109/TGRS.2019.2934016 |
10 |
CAMPS A, MUNOZ-MARTIN J F Analytical computation of the spatial resolution in GNSS-R and experimental validation at L1 and L5. Remote Sensing, 2020, 12 (23): 3910.
doi: 10.3390/rs12233910 |
11 | ZHENG Y, YANG Y, CHEN W. A novel range compression algorithm for resolution enhancement in GNSS-SARs. Sensors, 2017, 17(7): 1496. |
12 |
CARTWRIGHT J, BANKS C J, SROKOSZ M Improved GNSS-R bi-static altimetry and independent digital elevation models of Greenland and Antarctica from TechDemoSat-1. The Cryosphere, 2020, 14 (6): 1909- 1917.
doi: 10.5194/tc-14-1909-2020 |
13 |
MA H, ANTONIOU M, PASTINA D, et al Maritime moving target indication using passive GNSS-Based bistatic radar. IEEE Trans. on Aerospace and Electronic Systems, 2018, 54 (1): 115- 130.
doi: 10.1109/TAES.2017.2739900 |
14 | ZHENG Y, YANG Y, CHEN W New imaging algorithm for range resolution improvement in passive Global Navigation Satellite System-based synthetic aperture radar. IET Radar, Sonar & Navigation, 2019, 13 (12): 2166- 2173. |
15 | LONG T, ZENG T, HU C, et al High resolution radar real-time signal and information processing. China Communications, 2019, 16 (2): 105- 133. |
16 | TZADOK A, VALDES-GARCIA A, PEPELJUGOSKI P, et al AI-driven event recognition with a real-time 3D 60-GHz radar system. Proc. of the IEEE/MTT-S International Microwave Symposium, 2020, 795- 798. |
17 | WANG H, ZENG Z, JIANG M, et al Study on motion compensation method for W-band UAV MISAR real-time imaging. Proc. of the 21st International Radar Symposium, 2020, 143- 147. |
18 | DEMIR B, ERGUNAY S, NURLU G, et al Real-time high-resolution omnidirectional imaging platform for drone detection and tracking. Journal of Real-Time Image Processing, 2020, 17, 1625- 1635. |
19 |
BI H, BI G A, ZHANG B C, et al From theory to application:real-time sparse SAR imaging. IEEE Trans. on Geoscience and Remote Sensing, 2020, 58 (4): 2928- 2936.
doi: 10.1109/TGRS.2019.2958067 |
20 |
TAJDINI M M, MORGENTHALER A W, RAPPAPORT C M Multiview synthetic aperture ground-penetrating radar detection in rough terrain environment: a real-time 3-D forward model. IEEE Trans. on Geoscience and Remote Sensing, 2020, 58 (5): 3400- 3410.
doi: 10.1109/TGRS.2019.2954776 |
21 |
SALEHI-BARZEGAR A, CHELDAVI A, NAYYERI V, et al A fast diffraction tomography algorithm for 3-D through-the-wall radar imaging using nonuniform fast fourier transform. IEEE Geoscience and Remote Sensing Letters, 2020, 19, 3504805.
doi: 10.1109/LGRS |
22 | WANG Y Z, JIANG Z Y, LI Y D, et al. RODNet: a real-time radar object detection network cross-supervised by camera-radar fused object 3D localization. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 954−967. |
23 | ZHOU X, WANG P, CHEN J, et al. A modified radon fourier transform for GNSS-Based bistatic radar target detection. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 3501805. |
24 |
WANG S, BAO Q L Single target tracking for noncooperative bistatic radar with unknown signal illumination. Signal Processing, 2021, 183, 107991.
doi: 10.1016/j.sigpro.2021.107991 |
25 | ZHENG Y, YANG Y, CHEN W. Object detectability enhancement under weak signals for passive GNSS-based SAR. 2019, 13(8): 1549−1557. |
26 | SOMMER A. Backprojection autofocus of large ships with arbitrary motion for synthetic aperture radar. Berlin: University of Hanover, 2020. |
27 | REN K, BURKHOLDER R J. A 3-D novel fast back projection imaging algorithm for stratified media based on near-field monostatic and bistatic SAR. IEEE Trans. on Antennas and Propagation, 2020, 69(4): 2326−2335. |
28 | GAIBEL A, BOAG A. Back projection imaging of moving objects. IEEE Trans. on Antennas and Propagation, 2020. DOI: 1-1.10.1109/TAP.2020.3045500. |
29 | ZENG Z F. Passive bistatic sar with GNSS transmitter and a stationary receiver. Britain: University of Birmingham, 2013. |
30 |
TAKANE Y, YOUNG F W, LEEUW J D Nonmetric individual differences multidimensional scaling: an alternating least squares method with optimal scaling features. Psychometrika, 1977, 42 (1): 7- 67.
doi: 10.1007/BF02293745 |
31 |
QIU S, LI X M, HUANG Y D, et al New algorithm of response curve for fitting HDR image. International Journal of Pattern Recognition and Artificial Intelligence, 2020, 34 (1): 2054001.
doi: 10.1142/S0218001420540014 |
32 |
ZHANG Y, WANG R, LI S Z, et al Temperature sensor denoising algorithm based on curve fitting and compound kalman filtering. Sensors, 2020, 20 (7): 1959.
doi: 10.3390/s20071959 |
33 |
WANG J, LU Y, YE L, et al Efficient analysis-suitable T-spline fitting for freeform surface reconstruction and intelligent sampling. Precision Engineering, 2020, 66, 417- 428.
doi: 10.1016/j.precisioneng.2020.08.008 |
[1] | Lan LAN, Guisheng LIAO, Jingwei XU, Hanbing WANG. Multi-dimensional ambiguity function for subarray-based space-time coding radar [J]. Journal of Systems Engineering and Electronics, 2019, 30(5): 886-896. |
[2] | Ruiwen ZHANG, Bifeng SONG, Yang PEI, Qijia YUN. Improved method for subsystems performance trade-off in system-of-systems oriented design of UAV swarms [J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 720-737. |
[3] |
Feng J univen.
Dual worth trade-off method and its application for solving multiple criteria decision
[J]. Journal of Systems Engineering and Electronics, 2006, 17(3): 554-558.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||