
Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (5): 1043-1051.doi: 10.23919/JSEE.2022.000102
• ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
					
													Lingchi GE(
), Min FANG*(
), Haikun LI(
), Bo CHEN(
)
												  
						
						
						
					
				
Received:2021-05-10
															
							
															
							
															
							
																	Online:2022-10-27
															
							
																	Published:2022-10-27
															
						Contact:
								Min FANG   
																	E-mail:15109285306@163.com;fanglabtg@163.com;haikun1990@163.com;bchen_0314@stu.xidian.edu.cn
																					About author:Supported by:Lingchi GE, Min FANG, Haikun LI, Bo CHEN. Label correlation for partial label learning[J]. Journal of Systems Engineering and Electronics, 2022, 33(5): 1043-1051.
Table 2
Characteristics of real-world partial label data sets"
| Data set | Example | Feature | Class | Avg. CLs | Task domain | 
| FG-NET | 1002 | 262 | 78 | 7.48 | Facial age estimation [ |  
| Lost | 1122 | 108 | 16 | 2.23 | Automatic face naming [ |  
| MSRCv2 | 1758 | 48 | 23 | 3.16 | Object classification [ |  
| BirdSong | 4998 | 38 | 13 | 2.18 | Bird song classification [ |  
| Soccer Player | 17472 | 279 | 171 | 2.09 | Automatic face naming [ |  
| Yahoo! News | 22991 | 163 | 219 | 1.91 | Automatic face naming [ |  
Table 3
Classification accuracy (mean $ \pm $ std) of each comparing algorithm on real-world partial label data sets "
| Data set | PL-LCSA | SDIM | PL-AGGD | PL-ECOC | IPAL | PL-KNN | 
| Lost | 0.789±0.030 | 0.797±0.030 | 0.744±0.020  |  0.706±0.043  |  0.645±0.034  |  0.459±0.039  |  
| MSRCv2 | 0.562±0.021 | 0.500±0.023  |  0.509±0.028  |  0.427±0.024  |  0.531±0.037  |  0.418±0.046  |  
| BirdSong | 0.756±0.008 | 0.734±0.012  |  0.734±0.009  |  0.751±0.013 | 0.712±0.015  |  0.603±0.013  |  
| Soccer Player | 0.596±0.013 | 0.577±0.016  |  0.539±0.016  |  0.169±0.005  |  0.544±0.014  |  0.494±0.012  |  
| Yahoo! News | 0.670±0.008 | 0.663±0.013 | 0.647±0.009  |  0.561±0.011  |  0.607±0.012  |  0.471±0.005  |  
| FG-NET | 0.079±0.020 | 0.076±0.037 | 0.076±0.027 | 0.005±0.007  |  0.061±0.018  |  0.066±0.018 | 
Table 4
Classification accuracy (mean $ \pm $ std) of control variables for PL-LCSA on real-world data sets "
| Data set |   |    |    |  
| Lost | 0.789±0.030 | 0.767±0.032 | 0.746±0.025 | 
| MSRCv2 | 0.562±0.021 | 0.544±0.030 | 0.507±0.028 | 
| BirdSong | 0.756±0.008 | 0.751±0.010 | 0.733±0.011 | 
| Soccer Player | 0.596±0.013 | 0.589±0.013 | 0.538±0.015 | 
| Yahoo! News | 0.670±0.008 | 0.666±0.009 | 0.648±0.009 | 
| FG-NET | 0.079±0.020 | 0.071±0.023 | 0.077±0.024 | 
| 1 | LIU L P, DIETTERICH T G A conditional multinomial mixture model for superset label learning. Advances in Neural Information Processing Systems, 2012, 1, 548- 556. | 
| 2 | ZHOU D, ZHANG Z, ZHANG M L, et al Weakly supervised POS tagging without disambiguation. ACM Transactions on Asian and Low-Resource Language Information Processing, 2018, 17 (4): 1- 19. | 
| 3 | ZENG Z N, XIAO S J, JIA K, et al Learning by associating ambiguously labeled images. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, 708- 715. | 
| 4 |  
											YAO Y, DENG J H, CHEN X H, et al Deep discriminative CNN with temporal ensembling for ambiguously-labeled image classification. Proc. of the AAAI Conference on Artificial Intelligence, 2020, 34 (7): 12669- 12676. 
																							 doi: 10.1609/aaai.v34i07.6959  | 
										
| 5 |  
											HULLERMEIER E, BERINGER J Learning from ambiguously labeled examples. Intelligent Data Analysis, 2006, 10 (5): 419- 439. 
																							 doi: 10.3233/IDA-2006-10503  | 
										
| 6 | COUR T, SAPP B, TASKAR B Learning from partial labels. Journal of Machine Learning Research, 2011, 12, 1501- 1536. | 
| 7 | NGUYEN N, CARUANA R Classification with partial labels. Proc. of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008, 551- 559. | 
| 8 | ZHANG M L, YU F Solving the partial label learning problem: an instance-based approach. Proc. of the International Joint Conference on Artificial Intelligence, 2015, 4048- 4054. | 
| 9 | ZHANG M L, ZHOU B B, LIU X Y Partial label learning via feature-aware disambiguation. Proc. of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, 1335- 1344. | 
| 10 | GONG C, LIU T L, TANG Y Y, et al A regularization approach for instance-based superset label learning. IEEE Trans. on Cybernetics, 2017, 48 (3): 967- 978. | 
| 11 | WANG D B, LI L, ZHANG M L Adaptive graph guided disambiguation for partial label learning. Proc. of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019, 83- 91. | 
| 12 |  
											LYU G Y, FENG S H, WANG T, et al GM-PLL: graph matching based partial label learning. IEEE Trans. on Knowledge and Data Engineering, 2021, 33 (2): 521- 535. 
																							 doi: 10.1109/TKDE.2019.2933837  | 
										
| 13 | ZHU Y, KWOK J T, ZHOU Z H Multi-label learning with global and local label correlation. IEEE Trans. on Knowledge and Data Engineering, 2017, 30 (6): 1081- 1094. | 
| 14 | FENG L, AN B Partial label learning by semantic difference maximization. Proc. of the International Joint Conference on Artificial Intelligence, 2019, 2294- 2300. | 
| 15 | JIN R, GHAHRAMANI Z Learning with multiple labels. Proc. of the Annual Conference on Neural Information Processing Systems, 2002, 2, 897- 904. | 
| 16 | YU F, ZHANG M L Maximum margin partial label learning. Proc. of the Asian Conference on Machine Learning, 2016, 96- 111. | 
| 17 |  
											CHEN Y C, PATEL V M, CHELLAPPA R, et al Ambiguously labeled learning using dictionaries. IEEE Trans. on Information Forensics and Security, 2014, 9 (12): 2076- 2088. 
																							 doi: 10.1109/TIFS.2014.2359642  | 
										
| 18 | TANG C Z, ZHANG M L Confidence-rated discriminative partial label learning. Proc. of the AAAI Conference on Artificial Intelligence, 2017, 31 (1): 2611- 1618. | 
| 19 | LYU G Y, FENG S H, LI Y D, et al Hera: partial label learning by combining heterogeneous loss with sparse and low-rank regularization. ACM Trans. on Intelligent Systems and Technology, 2020, 11 (3): 1- 19. | 
| 20 | ZHANG Y B, YANG G, ZHAO S Y, et al Partial label learning via generative adversarial nets. Proc. of the European Conference on Artificial Intelligence, 2020, 1674- 1681. | 
| 21 |  
											ZHANG M L, YU F, TANG C Z Disambiguation-free partial label learning. IEEE Trans. on Knowledge and Data Engineering, 2017, 29 (10): 2155- 2167. 
																							 doi: 10.1109/TKDE.2017.2721942  | 
										
| 22 | WU X, ZHANG M L Towards enabling binary decomposition for partial label learning. Proc. of the International Joint Conference on Artificial Intelligence, 2018, 2868- 2874. | 
| 23 | YUILLE A L, RANGARAJAN A The concave-convex procedure (CCCP). Advances in Neural Information Processing Systems, 2002, 2, 1033- 1040. | 
| 24 | SRIPERUMBUDUR B K, LANCKRIET G R G On the convergence of the concave-convex procedure. Proc. of the Annual Conference on Neural Information Processing Systems, 2009, 9, 1759- 1767. | 
| 25 |  
											XU S, YANG M, ZHOU Y, et al Partial label metric learning by collapsing classes. International Journal of Machine Learning and Cybernetics, 2020, 11, 2453- 2460. 
																							 doi: 10.1007/s13042-020-01129-z  | 
										
| 26 | LYU J Q, XU M, FENG L, et al Progressive identification of true labels for partial-label learning. Proc. of the International Conference on Machine Learning, 2020, 6500- 6510. | 
| 27 |  
											YAN Y, GUO Y H Partial label learning with batch label correction. Proc. of the AAAI Conference on Artificial Intelligence, 2020, 34 (4): 6575- 6582. 
																							 doi: 10.1609/aaai.v34i04.6132  | 
										
| 28 |  
											PANIS G, LANITIS A, TSAPATSOULIS N, et al Overview of research on facial ageing using the FG-NET ageing database. IET Biometrics, 2016, 5 (2): 37- 46. 
																							 doi: 10.1049/iet-bmt.2014.0053  | 
										
| 29 | BRIGGS F, FERN X Z, RAICH R Rank-loss support instance machines for MIML instance annotation. Proc. of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2012, 534- 542. | 
| 30 | GUILLAUMIN M, VERBEEK J, SCHMID C Multiple instance metric learning from automatically labeled bags of faces. European Conference on Computer Vision, 2010, 634- 647. | 
| [1] | Jujie Zhang, Min Fang, and Huimin Chai. Multi-label local discriminative embedding [J]. Systems Engineering and Electronics, 2017, 28(5): 1009-1018. | 
| [2] | Jun He and Qiang Fu. Posterior probability calculation procedure for recognition rate comparison [J]. Systems Engineering and Electronics, 2016, 27(3): 700-711. | 
| [3] | Xue Zhenxia, Liu Sanyang & Liu Wanli. Progressive transductive learning pattern classification via single sphere [J]. Journal of Systems Engineering and Electronics, 2009, 20(3): 643-650. | 
| [4] | Chen Aijun, Li Jinzong & Zhu Bing. Circular object recognition based on shape parameters [J]. Journal of Systems Engineering and Electronics, 2007, 18(2): 199-204. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||