Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (4): 906-923.doi: 10.23919/JSEE.2023.000104
• SYSTEMS ENGINEERING • Previous Articles
Xi LONG1(), Weiwei CAI1,*(), Leping YANG1(), Tianyu WANG2()
Received:
2021-12-22
Online:
2023-08-18
Published:
2023-08-28
Contact:
Weiwei CAI
E-mail:longxi_1999@163.com;caiweiwei@nudt.edu.cn;ylp_1964@163.com;wangtianyu189@163.com
About author:
Supported by:
Xi LONG, Weiwei CAI, Leping YANG, Tianyu WANG. Mission scheduling of multi-sensor collaborative observation for space surveillance network[J]. Journal of Systems Engineering and Electronics, 2023, 34(4): 906-923.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 2
Experimental results of different algorithms at different target scales"
Target scale | Model without sub-time windows | STWCSP model | EH average result | |||||
FCFS | IFCFS | GAPE | GAPE-HP | GAPE-HD | GAPE-HR | |||
500 | 518 | 2257 | 2449 | 2515 | 2496 | 2554 | 2521.67 | |
600 | 554 | 2307 | 2760 | 2882 | 2974 | 3024 | 2960 | |
700 | 595 | 2348 | 3011 | 3270 | 3314 | 3317 | 3300.33 | |
800 | 595 | 2369 | 3199 | 3674 | 3498 | 3512 | 3561.33 | |
900 | 612 | 2389 | 3479 | 3927 | 4038 | 4149 | 4038 | |
1000 | 640 | 2399 | 3726 | 4142 | 4135 | 4233 | 4170 | |
1100 | 642 | 2402 | 3885 | 4409 | 4583 | 4373 | 4455 | |
1200 | 656 | 2425 | 4073 | 4631 | 4617 | 4635 | 4627.67 | |
1300 | 665 | 2449 | 4231 | 4858 | 4782 | 4801 | 4813.67 |
Table 3
Experimental results with different sensor observation capabilities"
Capability | GAPE | GAPE-HP | GAPE-HD | GAPE-HR |
(1 1 1) | 2128 | 2676 | 2660 | 2516 |
(1 1 5) | 3317 | 3699 | 3709 | 3742 |
(1 5 1) | 3797 | 4283 | 4380 | 4268 |
(1 5 5) | 4939 | 4874 | 4645 | 5015 |
(2 2 2) | 4231 | 4808 | 4898 | 4878 |
(3 3 3) | 4838 | 5226 | 5251 | 5257 |
(4 4 4) | 5108 | 5339 | 5358 | 5389 |
(5 1 1) | 3726 | 4142 | 4135 | 4233 |
(5 5 5) | 5350 | 5406 | 5414 | 5420 |
Table 4
Experimental results with different target observation time"
Observation | GAPE | GAPE-HP | GAPE-HD | GAPE-HR |
[0 100] | 3762 | 4998 | 4963 | 4993 |
[100 200] | 3765 | 4756 | 4617 | 4586 |
[200 300] | 3813 | 4430 | 4394 | 4448 |
[300 400] | 3740 | 4193 | 4237 | 4184 |
[400 500] | 3705 | 3828 | 3994 | 3797 |
[500 600] | 3826 | 3709 | 3715 | 3558 |
[600 700] | 3708 | 3468 | 3419 | 3343 |
[700 800] | 3784 | 3186 | 3182 | 3705 |
[800 900] | 3783 | 2982 | 2898 | 2951 |
Table 6
Experimental results with different algorithm parameters"
Probability | GAPE | GAPE-HP | GAPE-HD | GAPE-HR |
[0.5 0.4 0.3 0.3] | 3413 | 3929 | 3765 | 3732 |
[0.5 0.5 0.4 0.4] | 3341 | 3872 | 3838 | 3813 |
[0.7 0.2 0.3 0.4] | 3735 | 4059 | 4093 | 4105 |
[0.8 0.1 0.2 0.5] | 3726 | 4142 | 4135 | 4233 |
[0.8 0.1 0.3 0.4] | 3700 | 4214 | 4334 | 3722 |
[0.9 0.1 0.4 0.3] | 3846 | 4277 | 4271 | 4242 |
1 |
GUIDO P, DAVID V C, MARIA G D V, et al SPOOK: a tool for space objects catalogue creation and maintenance supporting space safety and sustainability. Acta Astronautica, 2021, 188, 89- 98.
doi: 10.1016/j.actaastro.2021.07.026 |
2 |
HU Y P, LI K B, LIANG Y G, et al Review on strategies of space-based optical space situational awareness. Journal of Systems Engineering and Electronics, 2021, 32 (5): 1152- 1166.
doi: 10.23919/JSEE.2021.000099 |
3 | THOMAS G R, PENG M S, DANIEL J. A deep reinforcement learning application to space-based sensor tasking for space situational awareness. Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2021: 1−13. |
4 | BRYAN D L, CAROLIN E F Space situational awareness sensor tasking: comparison of machinelearning with classical optimization methods. Journal of Guidance, Control, and Dynamics, 2020, 43 (2): 262- 273. |
5 |
NICHOLAS R C, BRANDON A J Risk-aware sensor scheduling and tracking of large constellations. Advance in Space Research, 2021, 68 (6): 2530- 2550.
doi: 10.1016/j.asr.2021.04.042 |
6 |
TAO X F, LI Z, XU C, et al Track-to-object association algorithm based on TLE filtering. Advance in Space Research, 2021, 67 (8): 2304- 2318.
doi: 10.1016/j.asr.2021.01.036 |
7 |
SAN M M, VERGARA E P, PEREA I, et al Hybrid SGP4 orbit propagator. Acta Astronautica, 2017, 137, 254- 260.
doi: 10.1016/j.actaastro.2017.04.015 |
8 |
WANG Y X, ZHOU D, SONG N B, et al Concurrent reconfiguration of resource-oriented emergency TT&C mission planning for space information networks. Journal of Communications and Information Networks, 2021, 6 (2): 142- 152.
doi: 10.23919/JCIN.2021.9475124 |
9 |
LI C D, XU W, XU L, et al An approach to multi-satellite TT&C resource scheduling based on multi-agent technology and comprehensive weighted priority determination method. Journal of Physics: Conference Series, 2021, 1812, 012001.
doi: 10.1088/1742-6596/1812/1/012001 |
10 | WU J, CHEN Y N, HE Y M, et al Survey on autonomous task scheduling technology for Earth observation satellites. Journal of Systems Engineering and Electronics, 2022, 33 (6): 1176- 1189. |
11 | CHANG Z X, ZHOU Z B, YAO F, et al Observation scheduling problem for AEOS with a comprehensive task clustering. Journal of Systems Engineering and Electronics, 2021, 32 (2): 347- 364. |
12 | FOUAD B A, HASAN M An optimization model and tabu search heuristic for scheduling of task on a radar sensor. IEEE Sensors Journal, 2016, 16 (17): 6695- 6702. |
13 | GAO J L, XING Q H, LIANG Z B Multiple sensor resource scheduling model and algorithm for high speed target tracking in aerospace. Systems Engineering and Electronics, 2019, 41 (10): 2244- 2250. |
14 |
ZHANG H W, XIE J W, GE J A, et al A hybrid adaptively genetic algorithm for task scheduling problem in the phased array radar. European Journal of Operational Research, 2019, 272 (3): 868- 878.
doi: 10.1016/j.ejor.2018.07.012 |
15 | KANIT D. Comparison of novel heuristic and integer programming schedulers for the USAF space surveillance network. Ohio, America: Air Force Institute of Technology, 2019. |
16 | MICHAEL S F. Optimization of geosynchronous space situational awareness architectures using parallel computation. Ohio, America: Air Force Institute of Technology, 2018. |
17 | YAN Q Q, SHEN H R, SHAO Q L Space object ground-based surveillance scheduling based on genetic-simulated annealing algorithm. Systems Engineering and Electronics, 2015, 37 (12): 2764- 2771. |
18 | YAN Q Q, SHEN H R, SHAO Q L Ground-based space surveillance rescheduling based on ant colony optimization. Ordnance Industry Automation, 2016, 35 (3): 1- 5. |
19 | LUO J, YU X H, WANG J J Cooperative scheduling problem space target observation of multi-platform. Fire Control & Command Control, 2021, 46 (12): 81- 87. |
20 |
GU X S, BAI J, ZHANG C A, et al Study on TT&C resources scheduling technique based on inter-satellite link. Acta Astronautica, 2014, 104 (1): 26- 32.
doi: 10.1016/j.actaastro.2014.07.007 |
21 |
ZHANG Z J, HU F N, ZHANG N Ant colony algorithm for satellite control resource scheduling problem. Applied Intelligence, 2018, 48 (10): 3295- 3305.
doi: 10.1007/s10489-018-1144-z |
22 | XU Y, JIAO Y Y, PAN X G, et al. An efficient scheduling method for satellite TT&C resources. Proc. of the 7th International Conference on Big Data and Information Analytics, 2021: 340−349. |
23 |
CHEN M, WEN J, SONG Y J, et al A population perturbation and elimination strategy based genetic algorithm for multi-satellite TT&C scheduling problem. Swarm and Evolutionary Computation, 2021, 65, 100912.
doi: 10.1016/j.swevo.2021.100912 |
24 | XUE N Y, DING D, WANG H M, et al Multi-type TT&C resource scheduling method based on improved genetic algorithm. Systems Engineering and Electronics, 2021, 43 (9): 2535- 2543. |
25 |
JIANG F B, WANG K Z, DONG L, et al Deep-learning-based joint resource scheduling algorithms for hybrid MEC Networks. IEEE Internet of Things Journal, 2020, 7 (7): 6252- 6265.
doi: 10.1109/JIOT.2019.2954503 |
26 | ANDREW J S, ALAN L T Optimal linear orbit determination. Journal of Guidance, Control, and Dynamics, 2020, 43 (3): 628- 632. |
27 |
LI Y, WU H L, SUN Y H Improved adaptive genetic algorithm based RFID positioning. Journal of Systems Engineering and Electronics, 2022, 33 (2): 305- 311.
doi: 10.23919/JSEE.2022.000031 |
28 |
MATTEW S, TAO X H, SOMAN E, et al A novel genetic algorithm based system for the scheduling of medical treatments. Expert Systems with Applications, 2022, 195, 116464.
doi: 10.1016/j.eswa.2021.116464 |
29 |
ZHANG J W, LIU W J, LIU W L An efficient genetic algorithm for decentralized multi-project scheduling with resource transfers. Journal of Industrial and Management Optimization, 2022, 18 (1): 1- 24.
doi: 10.3934/jimo.2020140 |
30 |
MEHRDAD A, YAHIA Z M, ALI M A rule-based heuristic algorithm for on-line order batching and scheduling in an order picking warehouse with multiple pickers. RAIRO-Operation Research, 2020, 54 (1): 101- 107.
doi: 10.1051/ro/2018069 |
31 | SRINATH N, YILMAZLAR I O, KURA M E, et al. Introducing preferences in scheduling applications. Computer & Industrial Engineering, 2022, 163: 10783 1. |
32 | OSMAN H T, DAVID A, EKREM M Comparison of heuristic priority rules in the solution of the resource-constrained project scheduling problem. Sustainability, 2021, 13 (17): 9956. |
33 |
LIANG J, ZHU Y H, LUO Y Z, et al A precedence-rule-based heuristic for satellite onboard activity planning. Acta Astronautica, 2021, 178, 757- 772.
doi: 10.1016/j.actaastro.2020.10.020 |
[1] | Lin ZHU, Junjiang LI, Zijie LIU, Dengyin ZHANG. A multi-resource scheduling scheme of Kubernetes for IIoT [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 683-692. |
[2] | Bo LI, Linyu TIAN, Daqing CHEN, Shiyang LIANG. An adaptive dwell time scheduling model for phased array radar based on three-way decision [J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 500-509. |
[3] | Jia Zeng, Xiaoke Yang, Lingyu Yang, and Gongzhang Shen. Modeling for UAV resource scheduling under mission synchronization [J]. Journal of Systems Engineering and Electronics, 2010, 21(5): 821-826. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||