Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (6): 1411-1427.doi: 10.23919/JSEE.2024.000032
• ELECTRONICS TECHNOLOGY • Previous Articles
Received:
2023-08-21
Accepted:
2024-03-11
Online:
2024-12-18
Published:
2025-01-14
Contact:
Hua YAN
E-mail:yinhc207@126.com;yanhuabit@126.com
About author:
Supported by:
Hongcheng YIN, Hua YAN. Parametric modeling and applications of target scattering centers: a review[J]. Journal of Systems Engineering and Electronics, 2024, 35(6): 1411-1427.
1 | HUANG P K, YIN H C, XU X J. Radar target characteristics. Beijing: Publishing House of Electronics Industry, 2004. (in Chinese) |
2 | GUO K Y, YIN H C, SHENG X Q Research on scattering center modeling for radar target. Chinese Journal of Radio Science, 2020, 35 (1): 106- 115. |
3 | YIN H C, GUO K Y Hot-topics and difficult problems in the research field of electromagnetic scattering characteristics of targets. Chinese Journal of Radio Science, 2020, 35 (1): 128- 134. |
4 | HURST M P, MITTRA R. Scattering center analysis via Prony’s method. IEEE Trans. on Antennas and Propagation 1987, 35(8): 986−988. |
5 | CARRIERE R, MOSES R L. High-resolution parametric modeling of canonical radar scatterers with application to radar target identification. Proc. of the IEEE International Conference on Systems Engineering, 1991. DOI: 10.1109/ICSYSE.1991.161070. |
6 | POTTER L C, CHIANG D M, CARRIERE R. A GTD-based parametric model for radar scattering. IEEE Trans. on Antennas and Propagation 2002, 43(10): 1058−1067. |
7 | XING X Y, YAN H, YIN H C, et al Analysis of frequency-dependent characteristics of mirror-mirror coupled scattering centers. Guidance and Fuze, 2014, 35 (2): 39- 43. |
8 | WEN G J, ZHU G Q, YIN H C, et al SAR ATR based on 3D electromagnetic scattering model. Journal of Radars, 2017, 6 (2): 115- 135. |
9 | YAN H, LI S, LI H M, et al. Monostatic GTD model for doubly scattering due to specular reflections or edge diffractions. Proc. of the IEEE International Conference on Computational Electromagnetics, 2018. DOI: 10.1109/COMPEM.2018.8496539. |
10 | YAN H, ZHANG L, LU J W, et al Frequency dependent factor expression of GTD scattering center model for arbitrary multiple scattering mechanism. Journal of Radars, 2021, 10 (3): 370- 381. |
11 |
HUA Y Estimating two-dimensional frequencies by matrix enhancement and matrix pencil. IEEE Trans. on Signal Processing, 1992, 40 (9): 2267- 2280.
doi: 10.1109/78.157226 |
12 |
SACCHINI J J, STEEDLY W M, MOSES R L Two-dimensional Prony modeling and parameter estimation. IEEE Trans. on Signal Processing, 1993, 41 (11): 3127- 3137.
doi: 10.1109/78.257242 |
13 |
POTTER L C, MOSES R L Attributed scattering centers for SAR ATR. IEEE Trans. on Image Processing, 1997, 6 (1): 79- 91.
doi: 10.1109/83.552098 |
14 | GERRY M J, POTTER L C, GUPTA I J, et al. A parametric model for synthetic aperture radar measurements. IEEE Trans. on Antennas and Propagation 1999, 47(7): 1179−1188. |
15 | AI F Z, ZHOU J X, HU L, et al. The parametric model of non-uniformly distributed scattering centers. Proc. of the IET International Conference on Radar Systems, 2012. DOI: 10.1049/cp.2012.1712. |
16 | FENG A Q, GUO K Y, SHENG X I. Modification and parameter estimation of attributed scattering center model for flat-based warhead without wings. Transactions of Beijing Institute of Technology, 2015, 35(9): 961−967. (in Chinese) |
17 |
LI Z H, JIN K, XU B, et al An improved attributed scattering model optimized by incremental sparse Bayesian learning. IEEE Trans. on Geoscience and Remote Sensing, 2016, 54 (5): 2973- 2987.
doi: 10.1109/TGRS.2015.2509539 |
18 | JACKSON J A, MOSES R L. Feature extraction algorithm for 3D scene modeling and visualization using monostatic SAR. Proc. of the SPIE, Algorithms for Synthetic Aperture Radar Imagery XIII, 2006. DOI: 10.1117/12.666558. |
19 |
JACKSON J A, RIGLING B D, MOSES R L Canonical scattering feature models for 3D and bistatic SAR. IEEE Trans. on Aerospace and Electronic Systems, 2010, 46 (2): 525- 541.
doi: 10.1109/TAES.2010.5461639 |
20 |
LU J W, ZHANG Y J, YAN H, et al Global scattering center representation of target wide-angle single reflection/diffraction mechanisms based on the multiple manifold concept. Electronics, 2022, 11 (24): 4209- 4228.
doi: 10.3390/electronics11244209 |
21 | FULLER D F. Phase history decomposition for efficient scatterer classification in SAR imagery. Wright Patterson AFB: Air Force Institute of Technology, 2011. |
22 | XU S K, LIU J H, WEI X Z, et al. Parameter estimation of 3D scattering centers based on CP-GTD model. Acta Electronics Sinica, 2011, 39(12): 2755−2760. (in Chinese) |
23 |
SAVILLE M A, JACKSON J A, FULLER D F Rethinking vehicle classification with wide-angle polarimetric SAR. IEEE Aerospace and Electronic Systems Magazine, 2014, 29 (1): 41- 49.
doi: 10.1109/MAES.2014.130057 |
24 |
DUAN J, ZHANG L, XING M D, et al Polarimetric target decomposition based on attributed scattering center model for synthetic aperture radar targets. IEEE Geoscience and Remote Sensing Letters, 2014, 11 (12): 2095- 2099.
doi: 10.1109/LGRS.2014.2320053 |
25 |
LI Z H, XU B, YANG J Polarimetric inverse scattering via incremental sparse Bayesian multitask learning. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (5): 691- 695.
doi: 10.1109/LGRS.2016.2537544 |
26 |
YAN H, YIN H C, LI S, et al 3D rotation representation of multiple reflections and parametric model for bistatic scattering from arbitrary multiplate structure. IEEE Trans. on Antennas and Propagation, 2019, 67 (7): 4777- 4791.
doi: 10.1109/TAP.2019.2911268 |
27 |
XING X Y, YAN H, YIN H C, et al A bistatic attributed scattering center model for SAR ATR. IEEE Trans. on Antennas and Propagation, 2021, 69 (11): 7855- 7866.
doi: 10.1109/TAP.2021.3083817 |
28 |
QU Q Y, GUO K Y, SHENG X Q An accurate bistatic scattering center model for extended cone-shaped targets. IEEE Trans. on Antennas and Propagation, 2014, 62 (10): 5209- 5218.
doi: 10.1109/TAP.2014.2342761 |
29 |
MOORE J, LING H Time-frequency analysis of the scattering phenomenology in finite dielectric gratings. Microwave and Optical Technology Letters, 1993, 6 (10): 597- 600.
doi: 10.1002/mop.4650061011 |
30 |
TRINTINALIA L C, LING H Joint time-frequency ISAR using adaptive processing. IEEE Trans. on Antennas and Propagation, 1997, 45 (2): 221- 227.
doi: 10.1109/8.560340 |
31 |
TRINTINALIA L C, BHALLA R, LING H Scattering center parameterization of wide-angle backscattered data using adaptive Gaussian representation. IEEE Trans. on Antennas and Propagation, 1997, 45 (11): 1664- 1668.
doi: 10.1109/8.650078 |
32 | CHEN V C, LING H. Time-frequency transforms for radar imaging and signal analysis. Norwood: Artech House, 2001. |
33 |
LI J, LING H Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150 (4): 284- 291.
doi: 10.1049/ip-rsn:20030729 |
34 |
GUO K Y, QU Q Y, SHENG X Q Geometry reconstruction based on attributes of scattering centers by using time-frequency representations. IEEE Trans. on Antennas and Propagation, 2016, 64 (2): 708- 720.
doi: 10.1109/TAP.2015.2511779 |
35 | MENSA D L. High resolution radar imaging. Dedham: MA Artech House, 1981. |
36 |
DOMINEK A, PETERS L, BURNSIDE W A time domain technique for mechanism extraction. IEEE Trans. on Antennas and Propagation, 1987, 35 (3): 305- 312.
doi: 10.1109/TAP.1987.1144086 |
37 | TSENG N. A very efficient RCS data compression and reconstruction technique. Columbus: The Ohio State University, 1992. |
38 |
ATLES R A Sonar for generalized target description and its similarity to animal echolocation systems. Journal of the Acoustical Society of America, 1976, 59 (1): 97- 105.
doi: 10.1121/1.380831 |
39 |
TSAO J, STEINBERG B D Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique. IEEE Trans. on Antennas and Propagation, 1988, 36 (4): 543- 556.
doi: 10.1109/8.1144 |
40 | KOETS A, MOSES R, L. Feature extraction using attributed scattering center models on SAR imagery. Proc. of the SPIE-Algorithms for Synthetic Aperture Radar Imagery VI, 1999. DOI: 10.1117/12.357628. |
41 | AKYILDIZ Y, MOSES R L. Scattering center model for SAR imagery. Proc. of the Conference on SAR Image Analysis, Modeling and Techniques II, 1999. DOI: 10.1117/12.373151. |
42 | DE GRAAF S R. Parametric estimation of complex 2-D sinusoids. Proc. of the 4th Annual ASSP Workshop on Spectrum Estimation and Modeling, 1988. DOI: 10.1109/SPECT.1988.206228. |
43 |
KIM K T, KIM H T One-dimensional scattering centre extraction for efficient radar target classification. IEE Proceedings-Radar Sonar and Navigation, 1999, 146 (3): 147- 158.
doi: 10.1049/ip-rsn:19990321 |
44 |
BOSE R, FREEDMAN A, STEINBERG B D Sequence CLEAN: a modified deconvolution technique for microwave images of contiguous targets. IEEE Trans. on Aerospace and Electronic Systems, 2002, 38 (1): 89- 97.
doi: 10.1109/7.993231 |
45 |
CHOI I S, KIM H T Two-dimensional evolutionary programming-based CLEAN. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39 (1): 373- 382.
doi: 10.1109/TAES.2003.1188920 |
46 |
MARTORELLA M, ACITO N, BERIZZI F Statistical CLEAN technique for ISAR imaging. IEEE Trans. on Geoscience and Remote Sensing, 2007, 45 (11): 3552- 3560.
doi: 10.1109/TGRS.2007.897440 |
47 | PEPIN M P, CLARK M P, LI J. On the applicability of 2-D damped exponential models to synthetic aperture radar. Proc. of the International Conference on Acoustics, Speech, and Signal Processing, 1995. DOI: 10.1109/ICASSP.1995.479900. |
48 |
LI J, STOICA P Efficient mixed-spectrum estimation with applications to target feature extraction. IEEE Trans. on Signal Processing, 1996, 44 (2): 281- 295.
doi: 10.1109/78.485924 |
49 |
LIU Z, LI J Feature extraction of SAR targets consisting of trihedral and dihedral corner reflectors. IEE Proceedings-Radar, Sonar, and Navigation, 1998, 145 (3): 161- 172.
doi: 10.1049/ip-rsn:19981729 |
50 | CARRIERE R, MOSES R L. Autoregressive moving average modeling of radar target signatures. Proc. of the IEEE National Radar Conference, 1988. DOI: 10.1109/NRC.1988.10962. |
51 |
STEEDLY W M, MOSES R L High resolution exponential modeling of fully polarized radar returns. IEEE Trans. on Aerospace and Electronic Systems, 1991, 27 (3): 459- 469.
doi: 10.1109/7.81427 |
52 |
WALTON E K Far-field measurements and maximum entropy analysis of lossy material on a conducting plate. IEEE Trans. on Antennas and Propagation, 1989, 37 (8): 1042- 1047.
doi: 10.1109/8.34142 |
53 | PIERSON JR W E, YING C J, MOSES R L, et al. Accuracy and computational comparisons of TLS-Prony, Burg, and FFT-based scattering center extraction algorithms. Proc. of the SPIE, Automatic Object Recognition III, 1993. DOI: 10.1117/12.160587. |
54 |
CARRIERE R, MOSES R L High resolution radar target modeling using a modified Prony estimator. IEEE Trans. on Antennas and Propagation, 1992, 40 (1): 13- 18.
doi: 10.1109/8.123348 |
55 |
YAMADA H, OHMIYA M, OGAWA Y, et al Superresolution techniques for time-domain measurements with a network analyzer. IEEE Trans. on Antennas and Propagation, 1991, 39 (2): 177- 183.
doi: 10.1109/8.68179 |
56 |
MOGHADDAR A, OGAWA Y, WALTON E K Estimating the time-delay and frequency decay parameter of scattering components using a modified MUSIC algorithm. IEEE Trans. on Antennas and Propagation, 1994, 42 (10): 1412- 1418.
doi: 10.1109/8.320748 |
57 |
ODENDAAL J W, BARNARD E, PISTORIUS C W I Two-dimensional super resolution radar imaging using the MUSIC algorithm. IEEE Trans. on Antennas and Propagation, 1994, 42 (10): 1386- 1391.
doi: 10.1109/8.320744 |
58 |
KIM K, KIM S, KIM H Two-dimensional ISAR imaging using full polarization and super-resolution processing techniques. IEE Proceedings-Radar, Sonar and Navigation, 1998, 145 (4): 240- 246.
doi: 10.1049/ip-rsn:19982033 |
59 |
QUINQUIS A, DEMETER S, RADOI E Enhancing the resolution of radar range profiles using a class of subspace eigenanalysis based techniques. Digital Signal Processing, 2001, 11 (4): 288- 303.
doi: 10.1006/dspr.2001.0394 |
60 |
QUINQUIS A, RADOI E, TOTIR F C Some radar imagery results using superresolution techniques. IEEE Trans. on Antennas and Propagation, 2004, 52 (5): 1230- 1244.
doi: 10.1109/TAP.2004.827541 |
61 | ZHANG Y H, GU X. Effects of amplitude and phase errors on 2D MUSIC and 2D ESPRIT algorithms in ISAR imaging. Proc. of the Asian-Pacific Conference on Synthetic Aperture Radar, 2009. DOI: 10.1109/APSAR.2009.5374274. |
62 | JIN D X, FANG D G, FU J S. Application of PR cosine-modulated filter bank to multichannel superresolution radar imaging. Proc. of the International Conference on Information, Communications and Signal Processing, 1997. DOI: 10.1109/ICICS.1997.647143. |
63 | DOBRE O A, RADOI E. Advances in subspace eigenanalysis based algorithms: from 1D toward 3D superresolution techniques. Proc. of the 5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, 2001. DOI: 10.1109/TELSKS.2001.955836. |
64 |
BURROWS M L Two-dimensional esprit with tracking for radar imaging and feature extraction. IEEE Trans. on Antennas and Propagation, 2004, 52 (2): 524- 532.
doi: 10.1109/TAP.2003.822411 |
65 | DAI D H, WANG X S, XING S Q, et al Full-polarization scattering center extraction and parameter estimation: P-ESPRIT algorithm. Journal of Electronics and Information Technology, 2008, 30 (8): 1963- 1967. |
66 |
LI S Y, SUN H J, LV X, et al Near-field scattering centers estimation using a far-field 3D ESPRIT type method. Signal Processing, 2012, 92 (10): 2519- 2524.
doi: 10.1016/j.sigpro.2012.03.016 |
67 |
WANG X, ZHANG M, ZHAO J Efficient cross-range scaling method via two-dimensional unitary ESPRIT scattering center extraction algorithm. IEEE Geoscience and Remote Sensing Letters, 2015, 12 (5): 928- 932.
doi: 10.1109/LGRS.2014.2367521 |
68 | ZHAO J, ZHANG M, WANG X, et al Three-dimensional super resolution ISAR imaging based on 2D unitary ESPRIT scattering centre extraction technique. IET Radar, Sonar and Navigation, 2017, 11 (1): 98- 106. |
69 |
HUA Y, BAQAI F A, ZHU Y, et al Imaging of point scatterers from step frequency ISAR data. IEEE Trans. on Aerospace and Electronic Systems, 1993, 29 (1): 195- 205.
doi: 10.1109/7.249125 |
70 | MCCLURE M, QIU R C, CARIN L On the superresolution identification of observables from swept-frequency scattering data. IEEE Trans. on Antennas and Propagation, 1997, 45 (4): 631- 641. |
71 | FULLER D F, SAVILLE M A. The spectrum parted linked image test (SPLIT) algorithm for estimating the frequency dependence of scattering center amplitudes. SPIE Proceedings, Algorithms for Synthetic Aperture Radar Imagery XVI, 2009. DOI: doi.org/10.1117/12.819329. |
72 | FULLER D F, SAVILLE M A. Classification of canonical scattering through sub-band analysis. Proc. of the SPIE, Algorithms for Synthetic Aperture Radar Imagery XVI, 2010. DOI: 10.1117/12.850558. |
73 |
CLARK M P, SCHARF L L Two-dimensional modal analysis based on maximum likelihood. IEEE Trans. on Signal Processing, 1994, 42 (6): 1443- 1452.
doi: 10.1109/78.286959 |
74 | YING C J, CHIANG H C, MOSES R L, et al. Complex SAR phase history modeling using two dimensional parametric estimation techniques. Proc. of the SPIE, Algorithms for Synthetic Aperture Radar Imagery III, 1996. DOI: 10.1117/12.242046. |
75 |
LI J, STOICA P, ZHANG D An efficient algorithm for two-dimensional frequency estimation. Multidimensional Systems and Signal Processing, 1996, 7 (2): 151- 178.
doi: 10.1007/BF01827811 |
76 |
TU M W, GUPTA I J, WALTON E K Application of maximum likelihood estimation to radar imaging. IEEE Trans. on Antennas and Propagation, 1997, 45 (1): 20- 27.
doi: 10.1109/8.554236 |
77 | SHI Z G, ZHOU J X, ZHAO H Z, et al A GTD scattering center model parameter estimation method based on CPSO. Acta Electronica Sinica, 2007, 35 (6): 1102- 1107. |
78 | WANG X, DONG C Z, YIN H C Parameter estimation of GTD model combining RELAX and PSO. Systems Engineering and Electronics, 2011, 33 (6): 1221- 1225. |
79 | YANG Z L, FANG D G, SHENG W X, et al. Frequency extrapolation by genetic algorithm based on GTD model for radar cross section. Proc. of the International Symposium on Antennas, Propagation and EM Theory, 2000. DOI: 10.1109/ISAPE.2000.894849. |
80 |
CETIN M, KARL W C Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization. IEEE Trans. on Image Processing, 2001, 10 (4): 623- 631.
doi: 10.1109/83.913596 |
81 |
ZWEIG G Super-resolution Fourier transforms by optimization and ISAR imaging. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150, 247- 253.
doi: 10.1049/ip-rsn:20030727 |
82 |
ÇETIN M, LANTERMAN A D Region-enhanced passive radar imaging. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152, 185- 194.
doi: 10.1049/ip-rsn:20045019 |
83 | WANG X L, WANG Z M. A super-resolution SAR imaging method based on basis pursuit. Proc. of the International Symposium on Multi-Spectral Image Processing and Pattern Recognition, 2005. DOI: 10.1117/12.655038. |
84 |
WANG Z M, WANG W W Fast and adaptive method for SAR super resolution imaging based on point scattering model and optimal basis selection. IEEE Trans. on Image Processing, 2009, 18 (7): 1477- 1486.
doi: 10.1109/TIP.2009.2017327 |
85 | WANG X L, WANG C L, WANG Z M. Super-resolution processing of SAR images by match pursuit method based on Fourier dictionary. Proc. of the International Conference on Computer Graphics, Imaging and Visualisation, 2007. DOI: 10.1109/CISP.2010.5646695. |
86 | WU M, XING M D, ZHANG L, et al. Super-resolution imaging algorithm based on attributed scattering center model. Proc. of the International Conference on Signal and Information Processing, 2014. DOI: 10.1109/chinasip.2014.688924. |
87 | WANG Y, JIANG Y, WANG Y H, et al. Scattering center estimation of HRRP via atomic norm minimization. Proc. of the IEEE Radar Conference, 2017. DOI: 10.1109/RADAR.2017.7944185. |
88 |
LIU H C, JIU B, LIU H W, et al Super resolution ISAR imaging based on sparse Bayesian learning. IEEE Trans. on Geoscience and Remote Sensing, 2014, 52 (8): 5005- 5013.
doi: 10.1109/TGRS.2013.2286402 |
89 |
XING X Y, YAN H, YIN H C, et al A convolutional neural network for parameter estimation of the Bi-GTD model. IEEE Trans. on Antennas and Propagation, 2023, 71 (6): 5378- 5391.
doi: 10.1109/TAP.2023.3266867 |
90 |
CHEN V C, LING H Joint time-frequency analysis for radar signal and image processing. IEEE Signal Processing Magazine, 1999, 16 (2): 81- 93.
doi: 10.1109/79.752053 |
91 |
MOORE J, TRINTINALIA L, LING H, et al Super-resolved time-frequency processing of wideband radar echo using ESPRIT. Microwave and Optical Technology Letters, 1995, 9 (1): 17- 19.
doi: 10.1002/mop.4650090108 |
92 | MOORE J, LING H Super-resolved time-frequency analysis of wideband backscattered data. IEEE Trans. on Antennas and Propagation, 1997, 43 (6): 221- 227. |
93 |
WHITELONIS N Radar signature analysis using a joint time-frequency distribution based on compressed sensing. IEEE Trans. on Antennas and Propagation, 2014, 62 (2): 755- 763.
doi: 10.1109/TAP.2013.2291893 |
94 | BHALLA R, LING H. ISAR image simulation of targets with moving parts using the shooting and bouncing ray technique. Proc. of the Antennas and Propagation Society International Symposium, 1994. |
95 | BHALLA R, LING H. Fast inverse synthetic aperture radar image simulation of complex targets using ray shooting. Proc. of the IEEE International Conference on Image processing, 1994. DOI: 10.1109/ICIP.1994.413356. |
96 |
BHALLA R, LING H Image domain ray tube integration formula for the shooting and bouncing ray technique. Radio Science, 1995, 30 (5): 1435- 1446.
doi: 10.1029/95RS02110 |
97 |
BHALLA R, LING H A fast algorithm for signature prediction and image formation using the shooting and bouncing ray technique. IEEE Trans. on Antennas and Propagation, 1995, 43 (7): 727- 731.
doi: 10.1109/8.391147 |
98 | BHALLA R, LING H. 3D scattering center extraction from Xpatch. Proc. of the IEEE Antennas and Propagation Society International Symposium, 1995. DOI: 10.1109/APS.1995.530962. |
99 |
BHALLA R, LING H Three-dimensional scattering center extraction using the shooting and bouncing ray technique. IEEE Trans. on Antennas and Propagation, 1996, 44 (11): 1445- 1453.
doi: 10.1109/8.542068 |
100 | BHALLA R. Fast algorithms for signature prediction, image formation and scattering center extraction using the shooting and bouncing ray technique. Austin: The University of Texas at Austin, 1996. |
101 |
BHALLA R, MOORE J, LING H A global scattering center representation of complex targets using the shooting and bouncing ray technique. IEEE Trans. on Antennas and Propagation, 1997, 45 (12): 1850- 1856.
doi: 10.1109/8.650204 |
102 |
BHALLA R, LING H, MOORE J, et al 3D scattering center representation of complex targets using the shooting and bouncing ray technique: a review. IEEE Antennas and Propagation Magazine, 1998, 40 (5): 30- 39.
doi: 10.1109/74.735963 |
103 |
WANG S Y, JENG S K A deterministic method for generating a scattering-center model to reconstruct the RCS pattern of complex radar targets. IEEE Trans. on Electromagnetic Compatibility, 1997, 39 (4): 315- 323.
doi: 10.1109/15.649821 |
104 | SULLIVAN T D. A technique of convolving unequally spaced samples using fast Fourier transforms. Albuquerque: Sandia National Laboratories, 1990. |
105 | YUN D J, LEE J I, BAE K U, et al. Precise scattering center extraction for ISAR image using the shooting and bouncing ray. Proc. of the IEEE International Symposium on Antennas and Propagation, 2016. https://ieeexplore.ieee.org/document/7821439. |
106 |
YUN D J, LEE J I, BAE K U, et al Improvement in computation time of 3-D scattering center extraction using the shooting and bouncing ray technique. IEEE Trans. on Antennas and Propagation, 2017, 65 (8): 4191- 4199.
doi: 10.1109/TAP.2017.2708078 |
107 | BUNGER R Fast imaging and scattering center model extraction with full-wave computational electromagnetics formations. Progress in Electromagnetics Research M, 2019, 81, 21- 30. |
108 | BUDDENDICK H, EIBERT T F. Application of a fast equivalent currents based algorithm for scattering center visualization of vehicles. Proc. of the IEEE Antennas and Propagation Society International Symposium, 2010. DOI: 10.1109/APS.2010.5561056. |
109 |
BUDDENDICK H, EIBERT T F Bistatic image formation from shooting and bouncing rays simulated current distributions. Progress in Electromagnetics Research, 2011, 119, 1- 18.
doi: 10.2528/PIER11060212 |
110 |
HE Y, HE S Y, ZHANG Y H, et al A forward approach to establish parametric scattering center models for known complex radar targets applied to SAR ATR. IEEE Trans. on Antennas and Propagation, 2014, 62 (12): 6192- 6205.
doi: 10.1109/TAP.2014.2360700 |
111 | HE Y, ZHU G Q, HE S Y, et al. Range profile analysis of complex targets based on ray clustering. Proc. of the IEEE International Conference on Computational Electromagnetics, 2015. DOI: 10.1109/COMPEM.2015.7052605. |
112 | ZHANG L, ZHU G Q, HE S Y. Research on the position correction of component-level parametric scattering center models established in a forward approach. Proc. of the Progress in Electromagnetic Research Symposium, 2016. DOI: 10.1109/PIERS.2016.7735024. |
113 | LIU J, HE S Y, ZHANG Y H, et al. Scattering centers diagnosis and parameters modification of the complex targets’ geometry model based on the limited observed data. Proc. of the Progress in Electromagnetic Research Symposium, 2016. DOI: 10.1109/PIERS.2016.7735170. |
114 | ZHANG L, HE S Y, ZHU G Q Forward calculation of three-dimensional position of scattering center from double scattering. Proc. of the National Conference on Microwave Millimeter Waves, 2017, 2, 33- 36. |
115 | ZHANG L, HE S Y, ZHU G Q, et al Forward derivation and analysis for 3D scattering center position of radar target. Journal of Electronics and Information Technology, 2018, 40 (12): 2854- 2860. |
116 | CHA W, ZHANG L, HE S Y, et al Analysis of forward modeling of complex target scattering center. Journal of Microwaves, 2018, 34 (2): 20- 24. |
117 | ZHANG L L, ZHANG Y H, HE S Y, et al Forward method for parametric modeling of scattering centers of complex medium targets. Proc. of the National Conference on Microwave and Millimeter Waves, 2017, 2, 515- 518. |
118 | QU Q Y, GUO K Y, MU H J, et al Miss distance measurement based on stable scattering centers of extended targets. Systems Engineering and Electronics, 2013, 35 (4): 692- 699. |
119 | GUO K Y, LI Q F, SHENG X Q, et al Sliding scattering center model for extended streamlined targets. Progress in Electromagnetics Research, 2013, 139 (3): 499- 516. |
120 | QU Q Y, GUO K Y, SHENG X Q. Applications of sliding scattering centers in feature extraction. Proc. of the IEEE International Conference on Computational Electromagnetics, 2015. DOI: 10.1109/COMPEM.2015.7052628. |
121 | QU Q Y, GUO K Y, SHENG X Q Scattering centers induced by creeping waves on streamlined cone-shaped targets in bistatic mode. IEEE Antennas and Wireless Propagation Letters, 2015, 14 (7): 462- 465. |
122 | QU Q Y, GUO K Y, SHENG X Q, et al. On scattering centers of cone-shaped targets in bistatic mode. Proc. of the IEEE International Symposium on Antennas and Propagation, 2015. DOI: 10.1109/APS.2015.7304635. |
123 | GUO K Y, NIU T Y, QU Q Y, et al Study on time-frequency image characteristics of scattering center. Journal of Electronics and Information Technology, 2016, 38 (2): 478- 485. |
124 |
GUO K Y, QU Q Y, FENG A, et al Miss distance estimation based on scattering center model using time-frequency analysis. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 1012- 1015.
doi: 10.1109/LAWP.2015.2490088 |
125 | LI Q F, GUO K Y, TANG B, et al. Scattering center modelling based on compressed sensing principle from under-sampling scattering field data. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2016. DOI: 10.1109/IGARSS.2016.7729690. |
126 | ZHAO X, GUO K Y, SHENG X Q. Scattering center model for edge diffraction based on EEC formula. Proc. of the Progress in Electromagnetic Research Symposium, 2016. DOI: 10.1109/PIERS.2016.7734321. |
127 | LI Q F, GUO K Y, SHENG X Q. Angular glint simulation based on scattering center model. Proc of the IEEE Geoscience and Remote Sensing Symposium, 2016. DOI: 10.1109/IGARSS.2016.7729683. |
128 | GUO K Y, NIU T Y, SHENG X Q Influence of multiple scattering centers with various attributes on radar angular measurements. Journal of Electronics and Information Technology, 2017, 39 (9): 2238- 2244. |
129 | LI Q F, GUO K Y, WANG J, et al Scattering center modeling using adaptive segmental compressive sampling. Joural of Transactions of Beijing Institute of Technology, 2017, 26 (4): 484- 493. |
130 | GUO K Y, WANG J X, SHENG X Q Modification of complex target scattering center modeling. Systems Engineering and Electronics, 2018, 40 (8): 1679- 1685. |
131 | GUO K Y, NIU T Y, SHENG X Q. Location reconstructions of attributed scattering centers by monopulse radar. IET Radar, Sonar & Navigation. 2018, 12(9): 1005−1011. |
132 | GUO K Y, HAN X X, SHENG X Q Scattering center models of backscattering waves by dielectric spheroid objects. Optical Express, 2018, 26 (4): 5060- 5074. |
133 | YAN H, CHEN Y, LI S, et al A fast algorithm for establishing 3D scattering center model for ship targets over sea surface using the shooting and bouncing ray technique. Journal of Radar, 2019, 8 (1): 107- 116. |
134 | LU J W, YAN H, YIN H C, et al Edge diffraction correction for 3D scattering center modeling based on the shooting and bouncing ray technique. Journal of Xidian University, 2021, 48 (2): 117- 124, 189. |
135 | LU J W, YAN H, ZHANG L, et al 3D-GTD model construction method using the shooting and bouncing ray technique. Systems Engineering and Electronics, 2021, 43 (8): 2028- 2036. |
136 | ZHANG L, YAN H, LU J W, et al. An improved SBR-based 3-D scattering center modeling algorithm for wideband RCS reconstruction. Proc. of the International Applied Computational Electromagnetics Society Symposium, 2021. DOI: 10.23919/ACES-China52398.2021.9581583. |
137 | JACKSON J A, MOSES R L. 3D feature estimation for sparse, nonlinear bistatic SAR apertures. Proc. of the IEEE Radar Conference, 2010. DOI: 10.1109/RADAR.2010.5494608. |
138 |
JACKSON J A, MOSES R L Synthetic aperture radar 3D feature extraction for arbitrary flight paths. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (3): 2065- 2084.
doi: 10.1109/TAES.2012.6237579 |
139 | HAMMOND G B. Target classification of canonical scatterers using classical estimation and dictionary based techniques. Wright Patterson AFB: Air Force Institute of Technology, 2012. |
140 | CROSSER M P. Improved dictionary formation and search for synthetic aperture radar canonical shape feature extraction. Wright Patterson AFB: Air Force Institute of Technology, 2014. |
141 | RADEMACHER R W. Bayesian methods and confidence intervals for automatic target recognition of SAR canonical shapes. Wright Patterson AFB: Air Force Institute of Technology, 2014. |
142 | JONSSON R, GENELL A, LOSAUS D, et al. Scattering center parameter estimation using a polynomial model for the amplitude aspect dependence. SPIE Proceedings, Algorithms for Synthetic Aperture Radar Imagery IX, 2002. DOI: 10.1117/12.478695. |
143 |
VARSHNEY K, CETIN M, FISHER J, et al Sparse representation in structured dictionaries with application to synthetic aperture radar. IEEE Trans. on Signal Processing, 2008, 56 (8): 3548- 3561.
doi: 10.1109/TSP.2008.919392 |
144 | STOJANOVIC I, CETIN M, KARL W C. Joint space-aspect reconstruction of wide-angle SAR exploiting sparsity. Proc. of the SPIE, Algorithms for Synthetic Aperture Radar Imagery XV, 2008. DOI: 10.1117/12.786288. |
145 |
AUSTIN C D, ERTIN E, MOSES R L Sparse signal methods for 3-D radar imaging. IEEE Journal of Selected Topics in Signal Processing, 2011, 5 (3): 408- 423.
doi: 10.1109/JSTSP.2010.2090128 |
146 |
CETIN M, STOJANOVIC I, ONHON N O, et al Sparsity-driven synthetic aperture radar imaging: reconstruction, autofocusing, moving targets, and compressed sensing. IEEE Signal Processing Magazine, 2014, 31 (4): 27- 40.
doi: 10.1109/MSP.2014.2312834 |
147 | HU Y N, ZHOU J X, FU Q The polynomial model of 3-dimensional attributed scattering center coefficient. Radar Science and Technology, 2013, 11 (5): 544- 568. |
148 | GAO Y X, LI Z Y, SHENG J L, et al Extraction method for anisotropy characteristic of scattering center in wide-angle SAR imagery. Journal of Electronics and Information Technology, 2016, 38 (8): 1956- 1961. |
149 | ZHOU Y. High frequency electromagnetic scattering prediction and scattering feature extraction. Austin: The University of Texas at Austin, 2005. |
150 | RAYNAL A M. Feature-based exploitation of multidimensional radar signatures. Austin: The University of Texas at Austin, 2008. |
151 |
ZHOU J X, ZHAO H Z, SHI Z G, et al Global scattering center model extraction of radar targets based on wideband measurements. IEEE Trans. on Antennas and Propagation, 2008, 56 (7): 2051- 2060.
doi: 10.1109/TAP.2008.924698 |
152 |
BAI X R, ZHOU F, BAO Z High-resolution radar imaging of space targets based on HRRP series. IEEE Trans. on Geoscience and Remote Sensing, 2014, 52 (5): 2369- 2381.
doi: 10.1109/TGRS.2013.2260342 |
153 |
ZHOU J X, SHI Z G, FU Q Three-dimensional scattering center extraction based on wide aperture data at a single elevation. IEEE Trans. on Geoscience and Remote Sensing, 2015, 53 (3): 1638- 1655.
doi: 10.1109/TGRS.2014.2346509 |
154 | CUI S, LI S, YAN H, et al. A method of 3D scattering center extraction based on HRRPs. Proc. of the National Conference on Target and Environment Modeling and Simulation Technology, 2015: 122−127. (in Chinese) |
155 | CUI S, LI S, YAN H A method of 3D scattering center extraction based on multiple HRRP series. Journal of System Simulation, 2018, 30 (2): 443- 451. |
156 |
HU J M, WEI W, ZHAI Q L, et al Global scattering center extraction for radar targets using a modified RANSAC method. IEEE Trans. on Antennas and Propagation, 2016, 64 (8): 3573- 3586.
doi: 10.1109/TAP.2016.2574880 |
157 | CUI S, LI S, YAN H. A method of 3-D scattering center extraction based on ISAR images. Proc. of the International Conference on Electronic Information and Communication Technology, 2016. DOI: 10.1109/ICEICT.2016.7879735. |
158 | ZHOU Z F. Parametric scattering center model reconstruction of canonical bodies and its application. Beijing: China Second Academy of Aerospace Science and Industry, 2016. (in Chinese) |
159 | YAN H, ZHANG L, LU J W, et al. 3-D wide-band global scattering center modeling based on SBR and clustering techniques. Proc. of the International Applied Computational Electromagnetics Society Symposium, 2021. DOI: 10.23919/ACES-China52398.2021.9581972. |
160 | ZHANG L. Electromagnetic scattering center modeling for complex targets and applications to SAR interpretation and recognition. Wuhan: Wuhan University, 2020. (in Chinese) |
161 | WALTON E K, MOGHADDAR A. High resolution imaging of radar targets using narrow band data. Antennas and Propagation Society Symposium 1991 Digest, 1991: 1020−1023. |
162 | ERER I, KARTAL M, KAYRAN A H 2-D data extrapolation for high resolution radar imaging using autoregressive lattice modelling. IEE Proceedings-Radar, Sonar and Navigation, 2001, 148 (5): 277- 283. |
163 |
GUPTA I J High-resolution radar imaging using 2-D linear prediction. IEEE Trans. on Antennas and Propagation, 1994, 42 (1): 31- 37.
doi: 10.1109/8.272298 |
164 |
GUPTA I J, BEALS M J, MOGHADDAR A Data extrapolation for high resolution radar imaging. IEEE Trans. on Antennas and Propagation, 1994, 42 (11): 1540- 1545.
doi: 10.1109/8.362783 |
165 | KEYDEL E R, LEE S W. Signature prediction for model-based automatic target recognition. Proc. of the SPIE, Algorithms for Synthetic Aperture Radar Imagery III, 1996. DOI: 10.1117/12.242042. |
166 | CHIANG H C. Feature-based classification with application to synthetic aperture radar. Columbus: The Ohio State University, 1999. |
167 | CHIANG H C, MOSES R L. ATR performance prediction using attributed scattering features. Proc. of the SPIE, Algorithms for Synthetic Aperture Radar Imagery VI, 1999. DOI: 10.1117/12.357693. |
168 |
CHIANG H C, MOSES R L, POTTER L C Model-based classification of radar images. IEEE Trans. on Information Theory, 2000, 46 (5): 1842- 1854.
doi: 10.1109/18.857795 |
169 | ZHANG X. High resolution parameter modeling of radar targets and its application in automatic target recognition. Changsha: National University of Defense Technology, 1997. (in Chinese) |
170 | JIANG W D, CHEN Z P, ZHUANG Z W A study of radar target scattering center extracted and its recognition method in optical region. Systems Engineering and Electronics, 2000, 22 (7): 72- 74. |
171 | WANG D W. Target electromagnetic feature extraction and identification for ultra wide band radar. Changsha: National University of Defense Technology, 2006. (in Chinese) |
172 |
WANG D W, MA X Y, SU Y GTD model-based target identification for ultra-wideband radar using matching pursuits and a likelihood-ratio test in the frequency domain. Microwave and Optical Technology Letters, 2006, 48 (6): 1215- 1218.
doi: 10.1002/mop.21577 |
173 | WANG J. A study on radar optical region target scattering center extraction and its application. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese) |
174 | JI K F. Research on feature extraction and classification of SAR images. Changsha: National University of Defense Technology, 2003. (in Chinese) |
175 | LIU Y J, GE D B, ZHANG Z Z Automatic target recognition with synthetic aperture radar image. Journal of Microwaves, 2007, (S1): 211- 215. |
176 | LIN Y S, ZHANG L, XUE A K, et al. SAR imagery scattering center extraction and target recognition based on scattering center model. Proc. of the 6th World Congress on Intelligent Control and Automation, 2006. DOI: 10.1109/WCICA.2006.1713871. |
177 |
ZHOU J X, SHI Z G, CHENG X Automatic target recognition of SAR images based on global scattering center model. IEEE Trans. on Geoscience and Remote Sensing, 2011, 49 (10): 3713- 3729.
doi: 10.1109/TGRS.2011.2162526 |
178 | MA C H, WEN G J, DING B Y, et al. Three-dimensional electromagnetic model-based scattering center matching method for synthetic aperture radar automatic target recognition by combining spatial and attribute information. Journal of Applied Remote Sensing, 2016, 10(1): 016025. |
179 |
DING B Y, WEN G J A region matching approach based on 3-D scattering center model with application to SAR target recognition. IEEE Sensors Journal, 2018, 18 (11): 4623- 4632.
doi: 10.1109/JSEN.2018.2828307 |
180 |
DING B Y, WEN G J Target reconstruction based on 3-D scattering center model for robust SAR ATR. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56 (7): 3772- 3785.
doi: 10.1109/TGRS.2018.2810181 |
181 | CHANG L C, GUPTA I J, BURNSIDE W D, et al. A data compression technique for scattered fields from complex targets. IEEE Trans. on Antennas and Propagation, 1997, 45(8): 1245−1251. |
182 | XIONG Y, FANG D G, SHENG W X The simultaneous interpolation of RCS in both in the spatial and frequency domains using model-based parameter estimation. Chinese Journal of Radio Science, 2001, 16 (3): 287- 290. |
183 | YANG Z L, FANG D G, SHENG W X Frequency extrapolation by genetic algorithm based on GTD model for radar cross section. Chinese Journal of Electronics, 2001, 10 (4): 552- 556. |
184 | XIONG Y, FANG J G, LIU T J Interpolation and extrapolation in computational electromagnetics. Chinese Journal of Radio Science, 2002, 17 (4): 325- 333. |
185 | YANG Z L. Radar target modeling, detection and identification. Nanjing: Nanjing University of Science and Technology, 2002. (in Chinese) |
186 | XIONG Y. Interpolation and extrapolation in computational electromagnetics. Nanjing: Nanjing University of Science and Technology, 2003. (in Chinese) |
187 | NIE Z P, FANG J G. Modeling of electromagnetic scattering characteristics of targets and environments-theory, method and implementation (Application). Beijing: National Defense Industry Press, 2009. (in Chinese) |
188 | QIU Z Q. Research on radar target scattering center extraction based on the spatial spectrum estimation algorithm. Chengdu: University of Electronic Science and Technology of China, 2016. (in Chinese) |
189 | HU L P, YAN H, ZHONG W J, et al Three-dimensional scattering center modeling and a fast SAR simulation method for ship targets. Journal of Xidian University, 2021, 48 (2): 72- 83. |
190 | LI Y C, XU F. Target reconstruction based on scattering mechanisms. Proc. of the IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar, 2015: 283−284. |
191 |
XU F, JIN Y Q, MOREIRA A A preliminary study on SAR advanced information retrieval and scene reconstruction. IEEE Trans. on Geoscience and Remote Sensing, 2016, 13 (10): 1443- 1447.
doi: 10.1109/LGRS.2016.2590878 |
192 | PETERS JR L, WEIMER F C Tracking radars for complex targets. Proceedings of the IEEE, 1963, 51, 2149- 2162. |
193 | ROSS R A, BECHTEL M E Scattering-center theory and radar glint analysis. IEEE Trans. on Aerospace and Electronic Systems, 1968, 4 (5): 756- 762. |
194 | CHANG L. Removal of undesired scattering centers using a radar image technique. Columbus: The Ohio State University, 1993. |
[1] | Yanxi CHEN, Kunyi GUO, Guangliang XIAO, Xinqing SHENG. Scattering center modeling for low-detectable targets [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 511-521. |
[2] | Long Li, Zheng Liu, and Tao Li. Radar high resolution range profile recognition via multi-SV method [J]. Systems Engineering and Electronics, 2017, 28(5): 879-889. |
[3] | Minghai Pan, Qinghua Han, Shufeng Gong, Weijun Long, and Haitao Wei. Impacts of space-time-frequency synchronization errors onwideband target echo characteristics of bistatic/multistatic radar [J]. Systems Engineering and Electronics, 2016, 27(3): 562-573. |
[4] | Tingting Huang and Zhizhong Li. Accelerated proportional degradation hazards-odds model in accelerated degradation test [J]. Journal of Systems Engineering and Electronics, 2015, 26(2): 397-406. |
[5] | Yang Li, Zhenyuan Ji, Bingfei Li, and Gil Alterovitz. Switching variability index based multiple strategy CFAR detector [J]. Journal of Systems Engineering and Electronics, 2014, 25(4): 580-. |
[6] | Li Zhihua, Zhou Fan, Tian Xiang & Chen Yaowu. High efficient moving object extraction and classification in traffic video surveillance [J]. Journal of Systems Engineering and Electronics, 2009, 20(4): 858-868. |
[7] | Wang Chao, Yin Hongcheng & Huang Peikang. Comparison between two concepts of angular glint: general considerations [J]. Journal of Systems Engineering and Electronics, 2008, 19(4): 635-642. |
[8] | Liu Donghong, Hu Wenlong & Chen Zhijie. SVD-TLS extending Prony algorithm for extracting UWB radar target feature [J]. Journal of Systems Engineering and Electronics, 2008, 19(2): 286-291. |
[9] | Wang Jian, Jin Yonggao, Dai Dingzhang, Dong Huachun & Quan Taifan. Particle filter initialization in non-linear non-Gaussian radar target tracking [J]. Journal of Systems Engineering and Electronics, 2007, 18(3): 491-496. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||