1 |
WANG R B, KISHK M A, ALOUINI M-S Ultra-dense LEO satellite-based communication systems: a novel modeling technique. IEEE Communications Magazine, 2022, 60 (4): 25- 31.
doi: 10.1109/MCOM.001.2100800
|
2 |
ZHEN L, BASHIR A K, YU K, et al Energy-efficient random access for LEO satellite-assisted 6G internet of remote things. IEEE Internet of Things Journal, 2021, 8 (7): 5114- 5128.
doi: 10.1109/JIOT.2020.3030856
|
3 |
GIAMBENE G, KOTA S, PILLAI P Satellite-5G integration: a network perspective. IEEE Trans. on Networking, 2018, 32 (5): 25- 31.
|
4 |
LIU S C, GAO Z, WU Y P, et al. LEO satellite constellations for 5G and beyond: how will they reshape vertical domains? IEEE Communications Magazine, 2021, 59(7): 30−36.
|
5 |
LIU W, TAO Y, LIU L Load-balancing routing algorithm based on segment routing for traffic return in LEO satellite networks. IEEE Access, 2019, 7, 112044- 112053.
doi: 10.1109/ACCESS.2019.2934932
|
6 |
CAINI C, FIRRINCIELI R. Application of contact graph routing to LEO satellite DTN communications. Proc. of the IEEE International Conference on Communications , 2012: 3301−3305.
|
7 |
GOTO D, SHIBAYAMA H, YAMASHITA F, et al. LEO-MIMO satellite systems for high capacity transmission. Proc. of the IEEE Global Communications Conference, 2018. DOI: 10.1109/GLOCOM.2018.8647694.
|
8 |
SHI K Y, LI H Y, SUO L. Temporal graph-based energy-limited maxflow routing over satellite networks. Proc. of the IFIP Networking Conference, 2021. DOI: 10.23919/IFIPNetworking52078.2021.9472794.
|
9 |
GAO Z H, GUO Q, NA Z Y Novel optimized routing algorithm for LEO satellite IP networks. Journal of Systems Engineering and Electronics, 2011, 22 (6): 917- 925.
doi: 10.3969/j.issn.1004-4132.2011.06.007
|
10 |
MARCANO N J H, DIEZ L, CALVO R A, et al On the queuing delay of time-varying channels in low earth orbit satellite constellations. IEEE Access, 2021, 9, 87378- 87390.
doi: 10.1109/ACCESS.2021.3089005
|
11 |
WANG J, PHAM K. Design of nonlinear control for active queue management in TCP satellite communication networks. Proc. of the IEEE Aerospace Conference, 2020. DOI: 10.1109/AERO47225.2020.9172560.
|
12 |
DENG X, CHANG L, ZENG S Y, et al Distance-based back-pressure routing for load-balancing LEO satellite networks. IEEE Trans. on Vehicular Technology, 2023, 72 (1): 1240- 1253.
doi: 10.1109/TVT.2022.3206616
|
13 |
CUI Y, YEH E M, LIU R Enhancing the delay performance of dynamic backpressure algorithms. IEEE/ACM Trans. on Networking, 2016, 24 (2): 954- 967.
doi: 10.1109/TNET.2015.2404852
|
14 |
TANG F L, ZHANG H T, YANG L T Multipath cooperative routing with efficient acknowledgement for LEO satellite networks. IEEE Trans. on Mobile Computing, 2019, 18 (1): 179- 192.
doi: 10.1109/TMC.2018.2831679
|
15 |
WANG F, YAO H P, HE W J, et al. Time-sensitive scheduling mechanism based on end-to-end collaborative latency tolerance for low-earth-orbit satellite networks. IEEE Trans. on Network Science and Engineering, 2023. DOI: 10.1109/TNSE.2023.3342938.
|
16 |
NING Y X, ZHAO Y L, LI X, et al. Load balancing routing algorithm against inter-satellite link congestion in LEO satellite optical networks. Proc. of the Optical Fiber Communications Conference and Exhibition, 2022. DOI: doi.org/10.1364/OFC.2022.W2A.22.
|
17 |
NISHIYAMA H, KUDOH D, KATO N, et al Load balancing and QoS provisioning based on congestion prediction for GEO/LEO hybrid satellite networks. Proceedings of the IEEE, 2011, 99 (11): 1998- 2007.
doi: 10.1109/JPROC.2011.2157885
|
18 |
WU Z F, HU G Y, JIN F L, et al A novel routing design in the IP-based GEO/LEO hybrid satellite networks. International Journal of Satellite Communications and Networking, 2017, 35 (3): 179- 199.
doi: 10.1002/sat.1174
|
19 |
LI X, TANG F L, CHEN L, et al. A state-aware and load-balanced routing model for LEO satellite networks. Proc. of the IEEE Global Communications Conference, 2017. DOI: 10.1109/GLOCOM.2017.8254443.
|
20 |
KUCUKATES R, ERSOY C Minimum flow maximum residual routing in LEO satellite networks using routing set. Wireless Networks, 2008, 14, 501- 517.
doi: 10.1007/s11276-006-0733-7
|
21 |
EKICI E, AKYILDIZ I F, BENDER M D A distributed routing algorithm for datagram traffic in LEO satellite networks. IEEE/ACM Trans. on Networking, 2001, 9 (2): 137- 147.
doi: 10.1109/90.917071
|
22 |
HENDERSON T R, KATZ R H. On distributed, geographic-based packet routing for LEO satellite networks. Proc. of the IEEE Conference on Global Communications, 2000. DOI: 10.1109/GLOCOM.2000.891311.
|
23 |
SORET B, SMITH D. Autonomous routing for LEO satellite constellations with minimum use of inter-plane links. Proc. of the IEEE International Conference on Communications, 2019. DOI: 10.1109/ICC.2019.8761787.
|
24 |
LIU X M, JIANG Z Q, LIU C H, et al. A low-complexity probabilistic routing algorithm for polar orbits satellite constellation networks. Proc. of the IEEE/CIC International Conference on Communications in China, 2015. DOI: 10.1109/ICCChina.2015.7448759.
|
25 |
WANG F, YAO H P, ZHANG Q, et al Dynamic distributed multi-path aided load balancing for optical data center networks. IEEE Trans. on Network and Service Management, 2022, 19 (2): 991- 1005.
doi: 10.1109/TNSM.2021.3125307
|