Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (4): 10421052.doi: 10.23919/JSEE.2024.000067
• CONTROL THEORY AND APPLICATION • Previous Articles
Received:
20221031
Online:
20240818
Published:
20240806
Contact:
Qi WANG
Email:wangqibuaa@126.com;lzzcama@139.com
About author:
Qi WANG, Zhizhong LIAO. Computational intelligence interception guidance law using online offpolicy integral reinforcement learning[J]. Journal of Systems Engineering and Electronics, 2024, 35(4): 10421052.
Table 1
Simulation conditions of Example 1"
Parameter  Symbol  Value 
Initial position of missile/m  (0, 0)  
Initial FPA of missile/(°)  0  
Missile velocity/(m·s^{−1})  600  
Initial position of target/m  (  
Initial FPA of target/(°)  210  
Target velocity/(m·s^{−1})  200  
Target acceleration/g  0  
Missile autopilot firstorder lag/s  0.1  
Target autopilot firstorder lag/s  0.1 
Table 2
Simulation conditions of Example 2"
Parameter  Symbol  Value 
Initial position of missile/m  (0, 0)  
Initial FPA of missile/(°)  0  
Missile velocity/(m·s^{−1})  600  
Initial position of target/m  (  
Initial FPA of target/(°)  190  
Target velocity/(m·s^{−1})  300  
Target acceleration/g  12  
Missile autopilot firstorder lag/s  0.1  
Target autopilot firstorder lag/s  0.1 
26 
YU J L, DONG X W, LI Q D, et al Adaptive practical optimal timevarying formation tracking control for disturbed highorder multiagent systems. IEEE Trans. on Circuits and Systems, 2022, 69 (6): 2567 2578.
doi: 10.1109/TCSI.2022.3151464 
27 
WU H N, LUO B Neural network based online simultaneous policy update algorithm for solving the HJI equation in nonlinear H_{∞} control. IEEE Trans. on Neural Networks and Learning Systems, 2012, 23 (12): 1884 1895.
doi: 10.1109/TNNLS.2012.2217349 
28 
JIANG Y, JIANG Z P Robust adaptive dynamic programming and feedback stabilization of nonlinear systems. IEEE Trans. on Neural Networks and Learning Systems, 2014, 25 (5): 882 893.
doi: 10.1109/TNNLS.2013.2294968 
29 
LUO B, WU H N, HUANG T W, et al Databased approximate policy iteration for affine nonlinear continuoustime optimal control design. Automatica, 2014, 50 (12): 3281 3290.
doi: 10.1016/j.automatica.2014.10.056 
30 
LUO B, WU H N, HUANG T W Offpolicy reinforcement learning for H_{∞} control design. IEEE Trans. on Cybernetics, 2015, 45 (1): 65 76.
doi: 10.1109/TCYB.2014.2319577 
31 
FU Y, CHAI T Y Online solution of twoplayer zerosum games for continuoustime nonlinear systems with completely unknown dynamics. IEEE Trans. on Neural Networks and Learning Systems, 2016, 27 (12): 2577 2587.
doi: 10.1109/TNNLS.2015.2496299 
32  BASAR T, BERNHARD P. H_{∞} optimal control and related minimax design problems. Massachusetts: Springer Science, 1995. 
33 
VAN D S A J L2gain analysis of nonlinear systems and nonlinear statefeedback H_{∞} control. IEEE Trans. on Automatic Control, 1992, 37 (6): 770 784.
doi: 10.1109/9.256331 
34 
ABUKHALAF M, LEWIS F L, HUANG J Neurodynamic programming and zerosum games for constrained control systems. IEEE Trans. on Neural Networks, 2008, 19 (7): 1243 1252.
doi: 10.1109/TNN.2008.2000204 
35 
VRABIE D, LEWIS F Neural network approach to continuoustime direct adaptive optimal control for partially unknown nonlinear systems. Neural Networks, 2009, 22 (3): 237 246.
doi: 10.1016/j.neunet.2009.03.008 
36 
HORNIK K, STINCHCOMBE M, WHITE H Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks, 1990, 3 (5): 551 560.
doi: 10.1016/08936080(90)900056 
37 
MODARES H, FRANK L, JIANG Z P H_{∞} tracking control of completely unknown continuoustime systems via offpolicy reinforcement learning. IEEE Trans. on Neural Networks and Learning Systems, 2015, 26 (10): 2550 2562.
doi: 10.1109/TNNLS.2015.2441749 
38 
BARDHAN R, GHOSE D Nonlinear differential gamesbased impactangleconstrained guidance law. Journal of Guidance, Control, and Dynamics, 2015, 38 (3): 384 402.
doi: 10.2514/1.G000940 
1 
YANG C D, YANG C C Analytical solution of threedimensional realistic true proportional navigation. Journal of Guidance Control and Dynamics, 1996, 19 (3): 569 577.
doi: 10.2514/3.21659 
2  PALUMBO N F, BLAUWKAMP R A, LLOYD J M Modern homing missile guidance theory and techniques. Johns Hopkins APL Technical Digest, 2010, 29 (1): 42 59. 
3 
ZHOU D, MU C D, XU W L Adaptive slidingmode guidance of a homing missile. Journal of Guidance, Control, and Dynamics, 1999, 22 (4): 589 594.
doi: 10.2514/2.4421 
4 
WANG X X, HUANG X L, DING S C Terminal angle constraint finitetime guidance law with input saturation and autopilot dynamics. Journal of the Franklin Institute, 2022, 359 (16): 8687 8712.
doi: 10.1016/j.jfranklin.2022.08.046 
5  ZHOU D, XU B Adaptive dynamic surface guidance law with input saturation constraint and autopilot dynamics. Journal of Guidance, Control, and Dynamics, 2016, 39 (5): 1152 1159. 
6  WANG Q, LIAO Z Z. Implementation method of parallel approaching guidance based on adaptive dynamic surface control accounting for autopilot lag. Proc. of the International Conference on Guidance, Navigation and Control, 2022: 309–317. 
7  DWIVEDI P N, BHATTACHARYYA A, PADHI R. Computationally efficient suboptimal mid course guidance using model predictive static programming. Proc. of the 17th World Congress, 2008: 3550–3555. 
8 
DWIVEDI P N, BHATTACHARYA A, PADHI R Suboptimal midcourse guidance of interceptors for highspeed targets with alignment angle constraint. Journal of Guidance, Control, and Dynamics, 2011, 34 (3): 860 877.
doi: 10.2514/1.50821 
9 
HALBE O, RAJA R G, PADHI R Robust reentry guidance of a reusable launch vehicle using model predictive static programming. Journal of Guidance, Control, and Dynamics, 2014, 37 (1): 134 148.
doi: 10.2514/1.61615 
10 
OZA H B, PADHI R Impactangleconstrained suboptimal model predictive static programming guidance of airtoground missiles. Journal of Guidance, Control, and Dynamics, 2012, 35 (1): 153 164.
doi: 10.2514/1.53647 
11 
TRIPATHI A K, PADHI R Autonomous landing for UAVs using TMPSP guidance and dynamic inversion autopilot. IFAC PapersOnLine, 2016, 49 (1): 18 23.
doi: 10.1016/j.ifacol.2016.03.022 
12 
PAN B F, MA Y Y, YAN R Newtontype methods in computational guidance. Journal of Guidance, Control, and Dynamics, 2019, 42 (2): 377 383.
doi: 10.2514/1.G003931 
13 
PING L Introducing computational guidance and control. Journal of Guidance, Control, and Dynamics, 2017, 40 (2): 193.
doi: 10.2514/1.G002745 
14  TSIOTRAS P, MESBAHI M Toward an algorithmic control theory. Journal of Guidance, Control, and Dynamics, 2017, 40 (2): 194 196. 
15  HOWARD R A. Dynamic programming and Markov processes. Massachusetts: MIT Press, 1960. 
16 
WEI Q L, WANG F Y, LIU D R, et al Finiteapproximationerrorbased discretetime iterative adaptive dynamic programming. IEEE Trans. on Cybernetics, 2014, 44 (12): 2820 2833.
doi: 10.1109/TCYB.2014.2354377 
17 
LEWIS F L, VRABIE D Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits and Systems Magazine, 2009, 9 (3): 32 50.
doi: 10.1109/MCAS.2009.933854 
18  GAUDET B, FURFARO R. Missile homingphase guidance law design using reinforcement learning. Proc. of the AIAA Guidance, Navigation, and Control Conference, 2012. DOI: 10.2514/6.20124470. 
19  GAUDET B, FURFARO R, LINARES R Reinforcement learning for angleonly intercept guidance of maneuvering targets. Aerospace Science and Technology, 2020, 99, 105746. 
20 
HE S, SHIN H S, TSOURDOS A Computational missile guidance: a deep reinforcement learning approach. Journal of Aerospace Information Systems, 2021, 18 (8): 571 582.
doi: 10.2514/1.I010970 
21 
LI W F, ZHU Y H, ZHAO D B Missile guidance with assisted deep reinforcement learning for headon interception of maneuvering target. Complex & Intelligent Systems, 2021, 8 (3): 1205 1216.
doi: 10.1007/s40747021005776 
22  WANG Q, LIAO Z Z, YAN F. Computational guidance law based on datadriven online adaptive critic designs. Proc. of the China Automation Congress, 2021: 1289−1294. 
23 
SUN J L, LIU C S Backsteppingbased adaptive dynamic programming for missiletarget guidance systems with state and input constraints. Journal of the Franklin Institute, 2018, 355 (17): 8412 8440.
doi: 10.1016/j.jfranklin.2018.08.024 
24  WANG Q, LIAO Z Z Computational intelligence game guidance law based on online adaptive dynamic programming. Aerospace Control, 2022, 40 (6): 48 54. 
25 
YU J L, DONG X W, LI Q D, et al Task coupling based layered cooperative guidance: theories and applications. Control Engineering Practice, 2022, 121, 105050.
doi: 10.1016/j.conengprac.2021.105050 
No related articles found! 
Viewed  
Full text 


Abstract 

