Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (6): 1397-1410.doi: 10.23919/JSEE.2024.000080
• ELECTRONICS TECHNOLOGY • Previous Articles
Jianmin JI(), Wei WANG(
), Huilong YU(
), Juan LIU(
), Bo CHEN(
)
Received:
2023-04-13
Accepted:
2023-11-07
Online:
2024-12-18
Published:
2025-01-14
Contact:
Huilong YU
E-mail:huaian.jijianmin@163.com;wang1961@vip.sina.com;YHL23@sina.com;juanliu163@163.com;cb199021@126.com
About author:
JI Jianmin was born in 1987. He received his M.E. degree from Tianjin University in 2013 and he is a senior engineer in Beijing Institute of Remote Sensing Equipment. His current research area is radome technology. E-mail: huaian.jijianmin@163.comJianmin JI, Wei WANG, Huilong YU, Juan LIU, Bo CHEN. Investigation of the electrical performance of high-speed aircraft radomes using a thermo-mechanical-electrical coupling model[J]. Journal of Systems Engineering and Electronics, 2024, 35(6): 1397-1410.
Table 1
Material physical properties of each component of the radome"
Property/Component | Dielectric shell | Adapter ring | Adhesive | Thermal barrier |
Dielectric constant | 5.65 (25 °C) 5.80 (500 °C) 6.10 ( | — | — | — |
Loss tangent | — | — | — | |
Young modulus/(GPa) | 120 (25 °C) 120 (500 °C) 100 ( | 102 | 0.003 | |
Poisson’s ratio | 0.245 | 0.300 | 0.480 | 0.420 |
Density/(g/cm3) | 2.61 | 4.85 | 0.800 | 0.900 |
Specific heat capacity/(kJ/(kg·K)) | 1.05 | 0.544 | 1.56 | 1.30 |
Thermal conductivity/(W/(m·K)) | 2.60 | 7.44 | 0.47 | 0.20 |
Coefficient of thermal expansion/(10−6/K) | 5.70 | 9.36 | 200 | 30.0 |
1 |
CRONE G A E, RUDGE A W, TAYLOR G N Design and performance of airborne radomes-a review. IEE Proceedings F: Communications Radar and Signal Processing, 1981, 128 (7): 451- 464.
doi: 10.1049/ip-f-1.1981.0077 |
2 | DU Y W. Radome telecommunication design method. Beijing: National Defense Industry Press, 1993. (in Chinese) |
3 | KOZAKOFF D J. Analysis of radome-enclosed antennas. 2nd ed. Norwood: Artech House, 2010. |
4 | SHAVIT R. Radome electromagnetic theory and design. New York: John Wiley & Sons, 2018. |
5 |
MOHAMMED YAZEEN P S, VINISHA C V, VANDANA S, et al Electromagnetic performance analysis of graded dielectric inhomogeneous streamlined airborne radome. IEEE Trans. on Antennas and Propagation, 2017, 65 (5): 2718- 2723.
doi: 10.1109/TAP.2017.2669718 |
6 |
YUAN J, KONG X K, CHEN K, et al Intelligent radome design with multilayer composites to realize asymmetric transmission of electromagnetic waves and energy isolation. IEEE Antennas and Wireless Propagation Letters, 2020, 19 (9): 1511- 1515.
doi: 10.1109/LAWP.2020.3008008 |
7 |
XU W Y, ZONG Y L, LI P, et al Variable thickness airborne radome design considering thickness profile control and additional electromagnetic performance. IEEE Trans. on Antennas and Propagation, 2021, 69 (4): 2433- 2448.
doi: 10.1109/TAP.2020.3025238 |
8 | KILCOYNE N R. A two-dimensional ray-tracing method for the calculation of radome boresight error and antenna pattern distortion. Ohio: The Ohio State University Columbus ElectroScience Labotatory, 1969. |
9 |
BURKS D G, GRAF E R, FAHEY M D A high-frequency analysis of radome-induced radar pointing error. IEEE Trans. on Antennas and Propagation, 1982, 30 (5): 947- 955.
doi: 10.1109/TAP.1982.1142914 |
10 |
VOLAKIS J L, SHIFFLETT J A CADDRAD: a physical optics radar/radome analysis code for arbitrary 3D geometries. IEEE Antennas and Propagation Magazine, 1997, 39 (6): 73- 80.
doi: 10.1109/74.646806 |
11 |
LIU G, AN Z B, LAO S Y, et al Firepower distribution method of anti-ship missile based on coupled path planning. Journal of Systems Engineering and Electronics, 2022, 33 (4): 1010- 1024.
doi: 10.23919/JSEE.2022.000097 |
12 | DING Y B, YUE X K, CHEN G S, et al. Review of control and guidance technology on hypersonic vehicle. Chinese Journal of Aeronautics, 2022, 35(7). DOI: 10.1016/j.cja2022.10.037. |
13 | LI B H, WU Y J, LI G F Hierarchical reinforcement learning guidance with threat avoidance. Journal of Systems Engineering and Electronics, 2022, 33 (5): 1173- 1185. |
14 |
ZHOU J P, LI W, XIA Q L, et al Robust missile autopilot design based on dynamic surface control. Journal of Systems Engineering and Electronics, 2023, 34 (1): 160- 171.
doi: 10.23919/JSEE.2022.000154 |
15 | ZOHURI B, MCDANIEL P, LEE J New weapon of tomorrow’s battlefield driven by hypersonic velocity. Journal of Energy and Power Engineering, 2019, 13, 177- 196. |
16 |
GUO H, WANG Z, FU B, et al Impact angle constrained fuzzy adaptive fault tolerant IGC method for Ski-to-Turn missiles with unsteady aerodynamics and multiple disturbances. Journal of Systems Engineering and Electronics, 2022, 33 (5): 1210- 1226.
doi: 10.23919/JSEE.2022.000116 |
17 |
NAN Y, YI G X, HU L, et al Influencing factor analysis of interception probability and classification-regression neural network based estimation. Journal of Systems Engineering and Electronics, 2023, 34 (4): 992- 1006.
doi: 10.23919/JSEE.2023.000092 |
18 | JIAO Y J, ZHAO J M, ZHOU J, et al. Key technology research of autonomous attack tactical missile. Proc. of the International Symposium on Advanced Launch Technologies, 2023, 2460(1): 012044. |
19 | BLOCKLEY R, SHYY W. Encyclopedia of aerospace engineering: Fluid dynamics and aerothermodynamics. Beijing: Beijing University of Science & Technology Press, 2010. (in Chinese) |
20 | BLOCKLEY R, SHYY W. Encyclopedia of aerospace engineering: dynamics and control. Beijing: Beijing University of Science & Technology Press, 2010. |
21 | WECKESSER L B, FRAZER R K, YOST D J, et al. Aerodynamic heating effects on radome boresight errors. Proc. of the 14th Symposium on Electromagnetic Windows, 1978: 45−51. |
22 | PRU N, JHA R M. Temperature dependent EM performance predictions of dielectric slab based on inhomogeneous planar layer model. Proc. of the IEEE International Symposium on Antennas and Propagation, 2012. DOI: 10.1109/APS.2012.6348597 |
23 | SONALIKAR H S. Temperature dependent EM investigation of inhomogeneous dielectric wall for application in ablatable radome. Proc. of the IEEE Indian Conference on Antennas and Propogation, 2018. DOI: 10.1109/incap.2018.8770943 |
24 | APARNA A P, SONALIKAR H S. Temperature dependent electromagnetic design of dielectric wall for airborne applications. Proc. of the IEEE Indian Conference on Antennas and Propogation, 2019. DOI: 10.1109/InCAP47789.2019.9134624 |
25 |
NAIR R U, VANDANA S, SANDHYA S, et al Temperature-dependent electromagnetic performance predictions of a hypersonic streamlined radome. Progress in Electromagnetics Research, 2015, 154, 65- 78.
doi: 10.2528/PIER15052602 |
26 |
PARAMESWARAN A, SONALIKAR H S Design of airborne radome using novel temperature dependent electromagnetic modeling. Progress in Electromagnetics Research C, 2020, 104, 37- 52.
doi: 10.2528/PIERC20041704 |
27 |
PARAMESWARAN A, SONALIKAR H S, KUNDU D Temperature-dependent electromagnetic design of inhomogeneous planar layer variable thickness radome for power transmission enhancement. IEEE Antennas and Wireless Propagation Letters, 2021, 20 (8): 1572- 1576.
doi: 10.1109/LAWP.2021.3091516 |
28 | WANG C S, WANG Y, CHEN Y K, et al Coupling model and electronic compensation of antenna-radome system for hypersonic vehicle with effect of high-temperature ablation. IEEE Trans. on Antennas and Propagation, 2019, 68 (3): 2340- 2355. |
29 |
XU W Y, DUAN B Y, LI P, et al Study on the electromagnetic performance of inhomogeneous radomes for airborne applications-part I: characteristics of phase distortion and boresight error. IEEE Trans. on Antennas and Propagation, 2017, 65 (6): 3162- 3174.
doi: 10.1109/TAP.2017.2694489 |
30 |
HEYDARI M S, GHEZAVATI J, ABBASGHOLIPOUR M, et al Various types of ceramics used in radome: a review. Scientia Iranica, 2017, 24 (3): 1136- 1147.
doi: 10.24200/sci.2017.4095 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||