Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (6): 1583-1593.doi: 10.23919/JSEE.2024.000098
• CONTROL THEORY AND APPLICATION • Previous Articles
Caizhi FAN1,*(), Mengmeng WANG2(
), Chao SONG1(
), Zikai ZHONG1(
), Yueneng YANG1(
)
Received:
2023-04-04
Online:
2024-12-18
Published:
2025-01-14
Contact:
Caizhi FAN
E-mail:caizhifan@nudt.edu.cn;wmmgfkd@163.com;songchao_satellite@163.com;zhongzikai2000@163.com;yangyueneng@163.com
About author:
Caizhi FAN, Mengmeng WANG, Chao SONG, Zikai ZHONG, Yueneng YANG. Anti-off-target control method for video satellite based on potential function[J]. Journal of Systems Engineering and Electronics, 2024, 35(6): 1583-1593.
Table 1
Orbital elements of the small video satellite and the space target"
Object | Parameter | Value |
Small video satellite | Semimajor axis/km | |
Eccentricity | 8.44×10−8 | |
Inclination/(°) | 45 | |
Right ascension of ascending node/(°) | 156.65 | |
Argument of perigee/(°) | 264.23 | |
True anomaly/(°) | 219.12 | |
Space target | Semimajor axis/km | |
Eccentricity | 9.99×10−8 | |
Inclination/(°) | 45 | |
Right ascension of ascending node/(°) | 146.64 | |
Argument of perigee/(°) | 274.63 | |
True anomaly/(°) | 218.58 |
1 | PRANOTO F S, PRAMUTADI A M. Studies on micro satellite aerial launch system. Proc. of the IEEE Aerospace Conference, 2017. DOI: 10.1109/AERO.2017.7943898. |
2 | CHO D H, CHOI W S, KIM M K, et al High-resolution image and video cubesat (HiREV): development of space technology test platform using a low-cost cubesat platform. International Journal of Aerospace Engineering, 2019, 2019, 8916416. |
3 |
GENG Y Z, LI C J, GUO Y N, et al Hybrid robust and optimal control for pointing a staring-mode spacecraft. Aerospace Science and Technology, 2020, 105, 105959.
doi: 10.1016/j.ast.2020.105959 |
4 |
NIU X J, LU B, FENG B M, et al Linear parameter-varying gain-scheduled preview-based robust attitude control design for a staring-mode satellite. Aerospace Science and Technology, 2022, 129, 107816.
doi: 10.1016/j.ast.2022.107816 |
5 | LIAN Y J, GAO Y D, ZENG G Q Staring imaging attitude control of small satellites. Journal of Guidance, Control, and Dynamics, 2017, 40 (5): 1275- 1282. |
6 | FAN G W, ZHANG J B, ZHAO H Y, et al. Large angle super agile attitude maneuver control of small satellite using reaction wheels. Proc. of the 40th Chinese Control Conference, 2021: 7557−7562. |
7 |
CUI K K, XIANG J H, ZHANG Y L Mission planning optimization of video satellite for ground multi-object staring imaging. Advances in Space Research, 2018, 61 (6): 1476- 1489.
doi: 10.1016/j.asr.2017.10.056 |
8 |
LI C J, GENG Y Z, GUO Y N, et al Suboptimal repointing maneuver of a staring-mode spacecraft with one DOF for final attitude. Acta Astronautica, 2020, 175, 349- 361.
doi: 10.1016/j.actaastro.2020.04.040 |
9 | HAN L J, ZHANG Y Y, WANG H S. Vision-based contact point selection for the fully non-fixed contact manipulation of deformable objects. IEEE Robotics and Automation Letters. 2022, 7(2): 4368−4375. |
10 |
XU M X, HU A, WANG H S Visual impedance based human-robot co-transportation with a tethered aerial vehicle. IEEE Trans. on Industrial Informatics, 2023, 19 (10): 10356- 10365.
doi: 10.1109/TII.2023.3302590 |
11 | WANG M M, LIU Y, SU D, et al. Accurate and real-time 3-D tracking for the following robots by fusing vision and ultrasonar information. IEEE/ASME Trans. on Mechatronics, 2018, 23(3): 997−1006. |
12 |
LI J, HUANG Y S, ZHANG X, et al An autonomous surgical instrument tracking framework with a binocular camera for a robotic flexible laparoscope. IEEE Robotics and Automation Letters, 2023, 8 (7): 4291- 4298.
doi: 10.1109/LRA.2023.3286669 |
13 |
YU J Z, WU Z X, YANG X, et al Underwater target tracking control of an untethered robotic fish with a camera stabilizer. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2021, 51 (10): 6523- 6534.
doi: 10.1109/TSMC.2019.2963246 |
14 | LEBEDEV A O, VASIL’EV V V. UAV control algorithm in automatic mode using computer vision. Optoelectronics, Instrumentation and Data Processing, 2021, 57(4): 406−411. |
15 | SHIRZADEH M, ASL H J, AMIRKHANI A, et al. Vision-based control of a quadrotor utilizing artificial neural networks for tracking of moving targets. Engineering Applications of Artificial Intelligence, 2017, 58: 34−48. |
16 | HUANG Y T, ZHU M, ZHENG Z W, et al. Linear velocity-free visual servoing control for unmanned helicopter landing on a ship with visibility constraint. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2022, 52(5): 2979−2993. |
17 | ZDESAR A, KLANCAR G, MUSIC G, et al. Design of the image-based satellite attitude control algorithm. Proc. of the 24 International Conference on Information, Communication and Automation Technologies, 2013. DOI: 10.1109/ICAT.2013.6684042. |
18 | ZHANG X Y, XIANG J H, ZHANG Y L. Tracking imaging attitude control of video satellite for cooperative space object. Proc. of the IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, 2016: 429−434. |
19 | ZHANG X Y, XIANG J H, ZHANG Y L. Space object detection in video satellite images using motion information. International Journal of Aerospace Engineering, 2017, 2017: 1687−5966. |
20 | FELICETTI L, EMAMI M R. Image-based attitude maneuvers for space debris tracking. Aerospace Science and Technology, 2018, 76: 58−71. |
21 | SONG C, FAN C Z, SONG H B, et al. Spacecraft staring attitude control for ground targets using an uncalibrated camera. Aerospace, 2022, 9(6): 283. |
22 | SONG C, FAN C Z, WANG M M Staring control for deep space targets based on uncalibrated small video satellite. Journal of National University of Defense Technology, 2022, 44 (4): 93- 100. |
23 | WANG M M, FAN C Z, SONG C. Image-based visual tracking attitude control research on small video satellites for space targets. Proc. of the IEEE International Conference on Real-time Computing and Robotics, 2022: 174−179. |
24 | SONG C, FAN C Z, WANG M M. Image-based adaptive staring attitude control for multiple ground targets using a miniaturized video satellite. Remote Sensing, 2022, 14(16): 3974. |
25 | PEI W J. Staring imaging attitude tracking control laws for video satellites based on image information by hyperbolic tangent fuzzy sliding mode control. Computational Intelligence and Neuroscience, 2022, 2022: 8289934. |
26 | LI P Y, DONG Y F, LI H J Staring imaging real-time optimal control based on neural network. International Journal of Aerospace Engineering, 2020, 2020, 882223- 14. |
27 |
ZHANG W, XU G J, SONG Y, et al An obstacle avoidance strategy for complex obstacles based on artificial potential field method. Journal of Field Robotics, 2023, 40 (5): 1231- 1244.
doi: 10.1002/rob.22183 |
28 |
OROZCO-ROSAS U, MONTIEL O, SEPÚLVEDA R Mobile robot path planning using membrane evolutionary artificial potential field. Applied Soft Computing, 2019, 77, 236- 251.
doi: 10.1016/j.asoc.2019.01.036 |
29 |
MELCHIORRE M, SALAMINA L, SCIMMI L S, et al Experiments on the artificial potential field with local attractors for mobile robot navigation. Robotics, 2023, 12 (3): 81.
doi: 10.3390/robotics12030081 |
30 | WANG Z, XU R, ZHU S Y, et al. Integration planning of gimbal angle and attitude motion for zero propellant maneuver under attitude and control moment gyroscope constraints. Acta Astronautica, 2020, 172: 123−133. |
31 | LEE U, MESBAHI M. Feedback control for spacecraft reorientation under attitude constraints via convex potentials. IEEE Trans. on Aerospace and Electronic Systems, 2014, 50(4): 2578−2592. |
32 | HU Q L, LI L Anti-unwinding attitude control of spacecraft considering input saturation and angular velocity constraint. Acta Aeronauticaet Astronautica Sinica, 2015, 36 (4): 1259- 1266. |
33 |
CHENG Y, YE D, SUN Z W Spacecraft reorientation control in presence of attitude constraint considering input saturation and stochastic disturbance. Acta Astronautica, 2018, 144, 61- 68.
doi: 10.1016/j.actaastro.2017.12.002 |
34 | SHI Z, ZHAO F Y, WANG X, et al. Potential function-based satellite attitude control for moving target tracking with input saturation constraint and time-varying inertia. Proc. of the 34th Chinese Control and Decision Conference, 2022: 439−444. |
35 | XU Y Q, LIU Y Y, HU Q L. Saturated attitude control for rigid body under input delay and pointing constraints. Aerospace Science and Technology, 2022, 130: 107885. |
36 | ZHANG Y, FENG Z X, ZHOU J. Reduced attitude control method for satellites with pointing constraints and disturbance. Proc. of the 34th Chinese Control and Decision Conference, 2022: 394−399. |
[1] | Zihang FENG, Liping YAN, Jinglan BAI, Yuanqing XIA, Bo XIAO. A content-aware correlation filter with multi-feature fusion for RGB-T tracking [J]. Journal of Systems Engineering and Electronics, 2024, 35(6): 1357-1371. |
[2] | Zhen SHI, Yaen XIE, Chengchen DENG, Kun ZHAO, Yushan HE, Yong HAO. Disturbance observer based finite-time coordinated attitude tracking control for spacecraft on SO(3) [J]. Journal of Systems Engineering and Electronics, 2020, 31(6): 1274-1285. |
[3] | Lu Wang, Yu Guo, Liping Wu, and Qingwei Chen. Improved optimal steering law for SGCMG and adaptive attitude control of flexible spacecraft [J]. Systems Engineering and Electronics, 2015, 26(6): 1268-1276. |
[4] | Guangxue Yu and Huifeng Li. Hierarchical structured robust adaptive attitude controller design for reusable launch vehicles [J]. Journal of Systems Engineering and Electronics, 2015, 26(4): 813-. |
[5] | Anlong Ming and Xin Chen. Sensor planning method for visual tracking in 3D camera networks [J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 1107-1116. |
[6] | Liang Wang, Yongzhi Sheng, and Xiangdong Liu. High-order sliding mode attitude controller design for reentry flight [J]. Journal of Systems Engineering and Electronics, 2014, 25(5): 848-858. |
[7] | Xueqin Chen, Yuhai Ma, Feng Wang, and Yunhai Geng. Research on improved integrated FDD/FTC with effectiveness factors [J]. Journal of Systems Engineering and Electronics, 2012, 23(5): 768-774. |
[8] | Miaohui Zhang, Ming Xin, and Jie Yang. Adaptive multi-feature tracking in particle swarm optimization based particle filter framework [J]. Journal of Systems Engineering and Electronics, 2012, 23(5): 775-783. |
[9] | Yuehua Cheng, Qian Hou, and Bin Jiang. Design and simulation of fault diagnosis based on NUIO/LMI for satellite attitude control systems [J]. Journal of Systems Engineering and Electronics, 2012, 23(4): 581-587. |
[10] | Wang Qingchao & Cai Peng. Research on optimal guaranteed cost control of flexible spacecraft [J]. Journal of Systems Engineering and Electronics, 2008, 19(5): 988-995. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||