Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (5): 1326-1336.doi: 10.23919/JSEE.2024.000105
• CONTROL THEORY AND APPLICATION • Previous Articles
Yalin CHEN1,2(), Xiangyu KONG1,*(), Jiayu LUO1()
Received:
2022-11-07
Accepted:
2023-11-24
Online:
2024-10-18
Published:
2024-11-06
Contact:
Xiangyu KONG
E-mail:cyl2318959445@163.com;xiangyukong01@163.com;540629964@qq.com
About author:
Supported by:
Yalin CHEN, Xiangyu KONG, Jiayu LUO. A process monitoring method for autoregressive-dynamic inner total latent structure projection[J]. Journal of Systems Engineering and Electronics, 2024, 35(5): 1326-1336.
Table 1
Meaning of different subspaces"
Subspace | Dimension | Description |
A predictable mass-dependent dynamic subspace in X-space | ||
Irrelevant subspaces in the predictable dynamic space of X that do not contribute to the predicted output | ||
A noisy subspace in the predictable dynamic space of X | ||
Unpredictable subspaces in X space |
Table 2
Quality-related fault detection rate %"
Fault | DMPLS | DTPLS | AR-DiTPLS | ||||||||
1 | 84.77 | 98.63 | 99.00 | 99.87 | 99.25 | 99.00 | 34.96 | 99.75 | |||
2 | 98.25 | 96.75 | 97.87 | 98.75 | 98.38 | 92.1 | 89.47 | 98.62 | |||
5 | 99.50 | 60.80 | 15.41 | 35.97 | 13.50 | 29.57 | 14.41 | 24.28 | |||
6 | 99.75 | 99.63 | 97.37 | 99.62 | 99.38 | 99.62 | 97.74 | 100.0 | |||
7 | 56.18 | 35.33 | 28.20 | 100.0 | 100.0 | 39.34 | 22.68 | 100.0 | |||
8 | 72.78 | 92.01 | 72.18 | 98.12 | 91.25 | 83.08 | 67.42 | 98.00 | |||
10 | 80.27 | 26.97 | 10.78 | 31.08 | 08.00 | 36.21 | 07.27 | 31.91 | |||
12 | 93.38 | 95.38 | 71.55 | 98.62 | 84.38 | 88.97 | 67.92 | 98.37 | |||
13 | 83.65 | 90.89 | 88.47 | 95.99 | 94.75 | 91.97 | 81.95 | 94.74 |
Table 3
Quality-independent fault false rate %"
Fault | DMPLS | DTPLS | AR-DiTPLS | ||||||||
3 | 4.24 | 2.50 | 9.02 | 17.04 | 4.00 | 3.50 | 1.88 | 1.75 | |||
4 | 11.36 | 2.12 | 6.77 | 69.67 | 87.88 | 2.38 | 100.0 | 88.74 | |||
9 | 4.12 | 2.00 | 9.40 | 14.91 | 5.63 | 1.38 | 2.38 | 1.63 | |||
11 | 10.61 | 10.24 | 12.16 | 64.66 | 64.75 | 1.63 | 64.41 | 63.08 | |||
15 | 2.50 | 4.87 | 10.03 | 16.04 | 5.75 | 3.38 | 2.50 | 5.26 |
Table 4
Variable description"
Variable | Location | Specific description |
PT408 | Differential pressure at the top | |
FT407 | Top traffic | |
LI405 | Top of the stage separator | |
FT406 | Output of top separator | |
LI504 | Gas and liquid three-phase separator | |
VC501 | VC501 valve location | |
VC302 | VC302 valve location | |
PO1 | The size of the pump current | |
FT407 | Highest density upper riser |
1 | YAO L, SHAO W M, GE Z Q, Hierarchical quality monitoring for large-scale industrial plants with big process data. IEEE Trans. on Neural Networks and Learning Systems, 2021, 32(8): 3330−3341. |
2 | KONG X Y, YANG Z Y, LUO J Y, et al. Extraction of reduced fault subspace based on KDICA and its application in fault diagnosis. IEEE Trans. on Instrumentation and Measurement, 2022, 71: 1−12. |
3 |
ZHU Q Q Dynamic autoregressive partial least squares for supervised modeling. IFAC-PapersOnLine, 2021, 54 (7): 234- 239.
doi: 10.1016/j.ifacol.2021.08.364 |
4 | XU B, ZHU Q Q Online quality-relevant monitoring with dynamic weighted partial least squares. Industrial & Engineering Chemistry Research, 2020, 59 (48): 21124- 21132. |
5 |
HU C H, LUO J Y, KONG X Y, et al Novel fault subspace extraction methods for the reconstruction-based fault diagnosis. Journal of Process Control, 2021, 105, 129- 140.
doi: 10.1016/j.jprocont.2021.07.008 |
6 |
CHEN C, WANG Y J, ZHANG Y, et al Indoor positioning algorithm based on nonlinear PLS integrated with RVM. IEEE Sensors Journal, 2018, 18 (2): 660- 668.
doi: 10.1109/JSEN.2017.2772798 |
7 |
ZHOU K, LI D J, CUI A J, et al Sparse flight spotlight mode 3-D imaging of spaceborne SAR based on sparse spectrum and principal component analysis. Journal of Systems Engineering and Electronics, 2021, 32 (5): 1143- 1151.
doi: 10.23919/JSEE.2021.000098 |
8 | WANG Y, ZHENG J H, ZENG J Z Dynamic shared segment protection algorithm with differentiated reliability in GMPLS networks. Journal of Systems Engineering and Electronics, 2009, 20 (1): 178- 184. |
9 |
MA W N, ZHAO F, LI X, et al Joint optimization of inspection-based and age-based preventive maintenance and spare ordering policies for single-unit systems. Journal of Systems Engineering and Electronics, 2022, 33 (5): 1268- 1280.
doi: 10.23919/JSEE.2022.000120 |
10 | ZHANG L P, SUN L S, LI W J, et al A joint Bayesian framework based on partial least squares discriminant analysis for finger vein recognition. IEEE Sensors Journal, 2022, 22 (1): 785- 794. |
11 |
FAISAL A I, MONDAL T, COWAN D, et al Characterization of knee and gait features from a wearable tele-health monitoring system. IEEE Sensors Journal, 2022, 22 (6): 4741- 4753.
doi: 10.1109/JSEN.2022.3146617 |
12 | LUO J Y, KONG Y X, HU C H, et al Key-performance- indicators-related fault subspace extraction for the reconstruction-based fault diagnosis. Measurement, 2021, 186 (8): 110- 119. |
13 |
SI Y, WANG Y, ZHOU D H Key-performance-indicator- related process monitoring based on improved kernel partial least squares. IEEE Trans. on Industrial Electronics, 2021, 68 (3): 2626- 2636.
doi: 10.1109/TIE.2020.2972472 |
14 | HU J, WEN C L, LI P, et al Direct projection to latent variable space for fault detection. Journal of the Franklin Institute, 2014, 351 (3): 1226- 1250. |
15 |
ZHOU D H, LI G, QIN S J Total projection to latent structures for process monitoring. AIChE Journal, 2010, 56 (1): 168- 178.
doi: 10.1002/aic.11977 |
16 |
QIN S J, ZHENG Y Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures. AIChE Journal, 2013, 59 (2): 496- 504.
doi: 10.1002/aic.13959 |
17 |
YIN S, DING S X, ZHANG P, et al Study on modifications of PLS approach for process monitoring. IFAC Proceedings Volumes, 2011, 44 (1): 12389- 12394.
doi: 10.3182/20110828-6-IT-1002.02876 |
18 | PENG K X, ZHANG K, YOU B, et al Quality-relevant fault monitoring based on efficient projection to latent structures with application to hot strip mill process. IET Control Theory & Applications, 2015, 9 (7): 1134- 1145. |
19 |
KASPAR M H, RAY W H Dynamic PLS modelling for process control. Chemical Engineering Science, 1993, 48 (20): 3447- 3461.
doi: 10.1016/0009-2509(93)85001-6 |
20 | QIN S J, MCAVOY T J. A data-based process modeling approach and its applications-sciencedirect. Dynamics and Control of Chemical Reactors, Distillation Columns and Batch Processes. 1993, 5(25): 93−98. |
21 |
LAKSHMINARAYANAN S, SHAH S L, NANDAKUM- AR K Modeling and control of multivariable processes: Dynamic PLS approach. AIChE Journal, 1997, 43 (9): 2307- 2322.
doi: 10.1002/aic.690430916 |
22 |
LI G, LIU B S, QIN S J, et al Quality relevant data-driven modeling and monitoring of multivariate dynamic processes: the dynamic T-PLS approach. IEEE Trans. on Neural Networks, 2011, 22 (12): 2262- 2271.
doi: 10.1109/TNN.2011.2165853 |
23 |
DONG Y N, QIN S J Dynamic-inner partial least squares for dynamic data modeling. IFAC-PapersOnLine, 2015, 48 (8): 117- 122.
doi: 10.1016/j.ifacol.2015.08.167 |
24 |
DONG Y N, QIN S J Regression on dynamic PLS structures for supervised learning of dynamic data. Journal of Process Control, 2018, 68, 64- 72.
doi: 10.1016/j.jprocont.2018.04.006 |
25 | YUAN Z Y, MA X, QIN Y H, et al. Two-step partial least squares for monitoring processes. Proc. of the 33rd Chinese Control and Decision Conference 2021, 2808−2813. |
26 | XU B, ZHU Q Q Concurrent auto-regressive latent variable model for dynamic anomaly detection-sciencedirect. Journal of Process Control, 2021, 108 (3): 1- 11. |
27 |
ZHU Q Q Latent variable regression for supervised modeling and monitoring. IEEE/CAA Journal of Automatica Sinica, 2020, 7 (3): 800- 811.
doi: 10.1109/JAS.2020.1003153 |
28 |
LI G, LIU B, ZHOU D H A new method of dynamic latent-variable modeling for process monitoring. IEEE Trans. on Industrial Electronics, 2014, 61 (11): 6438- 6445.
doi: 10.1109/TIE.2014.2301761 |
29 | DOWNS J J, VOGEL E F A plant-wide industrial process control problem. Computers & Chemical Engineering, 1993, 17 (3): 245- 255. |
30 | HU C H, LUO J Y, KONG X Y, et al Novel fault subspace extraction methods for the reconstruction-based fault diagnosis. Journal of Process Control, 2021, 105 (1): 129- 140. |
31 | CAPACI F, VANHATALO, KULAHCI E M, et al The revised Tennessee Eastman process simulator as testbed for SPC and DoE methods. Qual. Eng, 2019, 31 (2): 221- 229. |
32 |
DHIBI K, FEZAI R, MANSOURI M, et al A hybrid approach for process monitoring: improving data-driven methodologies with dataset size reduction and interval-Valued representation. IEEE Sensors Journal, 2020, 20 (17): 10228- 10239.
doi: 10.1109/JSEN.2020.2991508 |
33 | JIAO J F, YU H, WANG G A quality-related fault detection approach based on dynamic least squares for process monitoring. IEEE Trans. on Industrial Electronics, 2016, 63 (4): 2625- 2632. |
34 |
RUIZ-CARCEL C, CAO Y, MBA D, et al Statistical process monitoring of a multiphase flow facility. Control Engineering Practice, 2015, 42, 74- 88.
doi: 10.1016/j.conengprac.2015.04.012 |
35 | SUN C Y, YIN Y Z, KANG H B, et al. A distributed principal component regression method for quality-related fault detection and diagnosis. Information Sciences, 2022, 600: 301−302. |
[1] | Rong FAN, Chengke SI, Yi HAN, Qun WAN. RFFsNet-SEI: a multidimensional balanced-RFFs deep neural network framework for specific emitter identification [J]. Journal of Systems Engineering and Electronics, 2024, 35(3): 558-574. |
[2] | Xueling YANG, Gong ZHANG, Hu SONG. Ship recognition based on HRRP via multi-scale sparse preserving method [J]. Journal of Systems Engineering and Electronics, 2024, 35(3): 599-608. |
[3] | Yamin FAN, Duanjin ZHANG. Robust fault detection for delta operator switched fuzzy systems with bilateral packet losses [J]. Journal of Systems Engineering and Electronics, 2023, 34(1): 214-223. |
[4] | Weikun HE, Jingbo SUN, Xinyun ZHANG, Zhenming LIU. Micro-Doppler feature extraction of micro-rotor UAV under the background of low SNR [J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1127-1139. |
[5] | Peng YANG, Haoyu XIE, Jing QIU. System level test selection based on combinatorial dependency matrix [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 984-994. |
[6] | Tao WANG, Jinyan CAI, Yafeng MENG, Sai ZHU. A reliability evaluation method for embryonic cellular array based on Markov status graph model [J]. Journal of Systems Engineering and Electronics, 2020, 31(2): 432-446. |
[7] | Wenjie ZHANG, Shengnan FU, Wei LI, Qunli XIA. An impact angle constraint integral sliding mode guidance law for maneuvering targets interception [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 168-184. |
[8] | Wenbo LIU, Jiawen YUAN, Gong ZHANG, Qian SHEN. HRRP target recognition based on kernel joint discriminant analysis [J]. Journal of Systems Engineering and Electronics, 2019, 30(4): 703-708. |
[9] | Yuanhong LIU. Optimal selection of tests for fault detection and isolation in multi-operating mode system [J]. Journal of Systems Engineering and Electronics, 2019, 30(2): 425-434. |
[10] | Sangahn KIM. Variable selection-based SPC procedures for high-dimensional multistage processes [J]. Journal of Systems Engineering and Electronics, 2019, 30(1): 144-153. |
[11] | Maiying Zhong, Jie Chen, and Yue Geng. Scheme of optimal fault detection for linear discrete time-varying systems with delayed state [J]. Systems Engineering and Electronics, 2017, 28(5): 979-985. |
[12] | Bo Zhou, Kun Qian, Xudong Ma, and Xianzhong Dai. Ellipsoidal bounding set-membership identification approach for robust fault diagnosis with application to mobile robots [J]. Systems Engineering and Electronics, 2017, 28(5): 986-995. |
[13] | Jiawei Wang, Yi Shen, and Zhenhua Wang. H−/H∞ fault detection filter design for interval time-varying delays switched systems [J]. Systems Engineering and Electronics, 2016, 27(4): 878-. |
[14] | Jie Zhang, Yang Lu, Shu Yang, and Chong Xu. NHPP-based software reliability model considering testing effort and multivariate fault detection rate [J]. Systems Engineering and Electronics, 2016, 27(1): 260-. |
[15] | Qing Wang, Zhaolei Wang, Chaoyang Dong, and Erzhuo Niu. Fault detection and optimization for networked control systems with uncertain time-varying delay [J]. Systems Engineering and Electronics, 2015, 26(3): 544-556. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||