
Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (6): 1542-1562.doi: 10.23919/JSEE.2024.000108
• CONTROL THEORY AND APPLICATION • Previous Articles
					
													Bolin GAO1,2(
), Luyao WANG3(
), Shuyan LI3(
), Keke WAN3(
), Xuepeng WANG4,5(
), Jin ZHANG4,5(
), Chen WANG5(
), Yanbin LIU1(
), Wei ZHONG2,*(
)
												  
						
						
						
					
				
Received:2023-10-31
															
							
															
							
															
							
																	Online:2024-12-18
															
							
																	Published:2025-01-14
															
						Contact:
								Wei ZHONG   
																	E-mail:gaobolin@tsinghua.edu.cn;wangluyao13@cau.edu.cn;lishuyan@cau.edu.cn;wankeke@cau.edu.cn;wangxuepeng@sinotruk.com;zhangjin@shig.com.cn;wangchen@tongxin.cn;lyb20@mails.tsinghua.edu.cn;zhongwei@mail.tsinghua.edu.cn
																					About author:Supported by:Bolin GAO, Luyao WANG, Shuyan LI, Keke WAN, Xuepeng WANG, Jin ZHANG, Chen WANG, Yanbin LIU, Wei ZHONG. Cloud-based predictive adaptive cruise control considering preceding vehicle and slope information[J]. Journal of Systems Engineering and Electronics, 2024, 35(6): 1542-1562.
Table 1
Table of conditions"
| Condition series | Value of relevant signal | 
| Condition 1 | Cruise switch=1 | 
| Condition 2 | Constant switch=0, or  brake/clutch=1  | 
| Condition 3 | Network status=1, and  map information=1, and relative distance>  | 
| Condition 4 | Network status=0, or  map information=0  | 
| Condition 5 | Network status=1, and  map information=1, and relative distance<  | 
| Condition 6 | Same as condition 3 | 
| Condition 7 | Same as condition 4 | 
| Condition 8 | Same as condition 5 | 
Table 2
Vehicle parameter table"
| Parameter | Value | 
| Vehicle curb mass  | |
| Effective tire radius  | 0.51 | 
| Maximum engine torque  | |
| Transmission ratio  | 1 | 
| Final drive ratio  | 3.7 | 
| Transmission system efficiency  | 0.99 | 
| Rolling resistance coefficient  | 0.006 | 
| Air drag coefficient  | 0.69 | 
| Gravitational acceleration  | 9.81 | 
| Frontal area  | 9.8 | 
Table 3
Parameters of the polynomial fuel consumption model"
| Parameter | Value | 
| Constant term  | |
| First order term of rotary speed  | −2.387e−06 | 
| First order term of torque  | −1.222e−06 | 
| Second order term of torque  | 1.473e−09 | 
| First order term of mixed term  | 5.05e−09 | 
| Second order term of rotary speed  | 6.49e−10 | 
Table 4
Simulation parameters of PACC system"
| Parameter | Value | 
| Predictive horizon Y/m | |
| Iteration distance X/m | 200 | 
| Discrete interval  | 0.2 | 
| Reference velocity  | 75 | 
| Engine speed  | |
| Engine speed  | |
| Gear position  | 15 | 
| Maximum acceleration  | 0.3 | 
| Minimum acceleration  | −0.3 | 
| Control step size  | 10 | 
| Prediction step size  | 10 | 
| Sample time  | 0.2 | 
| Time constant  | 0.45 | 
| Time headway  | 2 | 
| Space constant term  | 37 | 
| Weight matrix  | |
| Weight coefficient  | 1 | 
| Attenuation coefficient  | 0.97 | 
| Time constant  | 6.67 | 
Table 5
Comparison of fuel consumption at different cruise speed settings"
| Reference  speed/(km/h)  | Cruise mode | Average  speed/(km/h)  | Distance/km | Fuel  consumption/L  | Fuel consumption per kilometer/(L/km)  | Fuel-saving rate/%  | 
| 65 | PACC | 62.40 | 8.736 | 2.018 | 23.10×10−2 | 6.49 | 
| ACC | 65.19 | 9.126 | 2.254 | 24.70×10−2 | ||
| 70 | PACC | 67.98 | 9.52 | 2.415 | 25.38×10−2 | 7.35 | 
| ACC | 70.19 | 9.827 | 2.692 | 27.39×10−2 | ||
| 75 | PACC | 70.83 | 9.916 | 2.549 | 25.71×10−2 | 6.06 | 
| ACC | 70.88 | 9.924 | 2.716 | 27.37×10−2 | ||
| 80 | PACC | 70.84 | 9.917 | 2.615 | 26.37×10−2 | 4.16 | 
| ACC | 70.88 | 9.924 | 2.733 | 27.54×10−2 | 
| 1 | Editorial Department of China Journal of Highway and Transport Review on China’s automotive engineering research progress: 2017. China Journal of Highway and Transport, 2017, 30 (6): 1- 197. | 
| 2 |  
											WANG Z, CHU D, GAO B, et al Cloud-based platoon predictive cruise control considering fuel-efficient and platoon stability. Journal of Transportation Engineering, Part A: Systems, 2024, 150 (3): 04023146. 
																							 doi: 10.1061/JTEPBS.TEENG-7920  | 
										
| 3 |  
											MOSER D, SCHMIED R, WASCHL H, et al Flexible spacing adaptive cruise control using stochastic model predictive control. IEEE Trans. on Control Systems Technology, 2018, 26 (1): 114- 127. 
																							 doi: 10.1109/TCST.2017.2658193  | 
										
| 4 |  
											DANG R N, WANG J Q, LI S B, et al Coordinated adaptive cruise control system with lane change assistance. IEEE Trans. on Intelligent Transportation Systems, 2015, 16 (5): 2373- 2383. 
																							 doi: 10.1109/TITS.2015.2389527  | 
										
| 5 | LI K Q, DAI Y F, LI S B, et al State-of-the-art and technical trends of intelligent and connected vehicles. Automotive Safety and Energy, 2017, 8 (1): 1- 14. | 
| 6 | WU G Q, ZHANG L X, LIU Z Y, et al Research status and development trend of vehicle adaptive cruise control systems. Journal of Tongji University (Natural Science Edition), 2017, 45 (4): 544- 553. | 
| 7 | LI S B, XU S B, WANG W J, et al Overview of ecological driving technology and application for ground vehicles. Automotive Safety and Energy, 2014, 5 (2): 121- 131. | 
| 8 | HONG J L, GAO B Z, DONG S Y, et al Key problems and research progress of energy saving optimization for intelligent connected vehicles. China Journal of Highway and Transport, 2021, 34 (11): 306- 334. | 
| 9 | WANG Y H, LI X K, ZHANG P L, et al Real-time optimization algorithm for truck predictive cruise based on ADAS map. Automotive Engineering, 2020, 42 (10): 1335- 1339,1411. | 
| 10 | JU F, MURGOVSKI N, ZHUANG W C, et al Predictive cruise controller for electric vehicle to save energy and extend battery lifetime. IEEE Trans. on Vehicular Technology, 2022, 72 (1): 469- 482. | 
| 11 | YAN Y J, LI N, HONG J L, et al Eco-coasting controller using road grade preview: evaluation and online implementation based on mixed integer model predictive control. IEEE Trans. on Vehicular Technology, 2023, 72 (10): 12508- 12523. | 
| 12 | BOREK J, GROELKE B, EARNHARDT C, et al Economic optimal control for minimizing fuel consumption of heavy-duty trucks in a highway environment. IEEE Trans. on Control Systems Technology, 2019, 28 (5): 1652- 1664. | 
| 13 | LIANG J H, LU Y B, WANG F A, et al A robust dynamic game-based control framework for integrate torque vectoring and active front-wheel steering system. IEEE Trans. on Intelligent Transportation Systems, 2023, 24 (7): 7358- 7341. | 
| 14 |  
											BARKENBUS J N Eco-driving: an overlooked climate change initiative. Energy Policy, 2010, 38 (2): 762- 769. 
																							 doi: 10.1016/j.enpol.2009.10.021  | 
										
| 15 | LI K Q, CHANG X Y, LI J W, et al Cloud control system for intelligent and connected vehicles and its application. Automotive Engineering, 2020, 42 (12): 1595- 1605. | 
| 16 | CUI M Y, HUANG H Y, XU Q, et al Survey of intelligent and connected vehicle technologies: architectures, functions and applications. Journal of Tsinghua University (Science and Technology), 2022, 62 (3): 493- 508. | 
| 17 | GAO R Z, XIA Y Q, DAI L, et al Design and implementation of data-driven predictive cloud control system. Journal of Systems Engineering and Electronics, 2022, 33 (6): 1258- 1268. | 
| 18 | GAO B L, WAN K K , CHEN Q E, et al A review and outlook on predictive cruise control of vehicles and typical applications under cloud control system. Machine Intelligence Research, 2023, 20 (5): 614- 639. | 
| 19 | LI K Q, LI J Q, CHANG X Y, et al Principles and typical applications of cloud control system for intelligent and connected vehicles. Automotive Safety and Energy, 2020, 11 (3): 261- 275. | 
| 20 |  
											HOU J, SONG Z Y A hierarchical energy management strategy for hybrid energy storage via vehicle-to-cloud connectivity. Applied Energy, 2020, 257, 113900. 
																							 doi: 10.1016/j.apenergy.2019.113900  | 
										
| 21 | YU Q W, LI K Q Fuel consumption modeling and evaluation based on AIC. Chinese Journal of Automotive Engineering, 2014, 4 (3): 165- 171. | 
| 22 |  
											LI S Y, WAN K K, GAO B L, et al Predictive cruise control for heavy trucks based on slope information under cloud control system. Journal of Systems Engineering and Electronics, 2022, 33 (4): 812- 826. 
																							 doi: 10.23919/JSEE.2022.000081  | 
										
| 23 | LI S Y, LI R, GAO B L, et al. Predictive adaptive cruise control for heavy-duty vehicle based on cloud control system.Proc. of the 25th International Conference on Intelligent Transportation Systems, 2022: 2998−3003. | 
| 24 |  
											CHU H Q, GUO L L, GAO B Z, et al Predictive cruise control using high-definition map and real vehicle implementation. IEEE Trans. on Vehicular Technology, 2018, 67 (12): 11377- 11389. 
																							 doi: 10.1109/TVT.2018.2871202  | 
										
| 25 | KIRCHES C, BOCK H G, SCHLODER J P, et al. Mixed-integer NMPC for predictive cruise control of heavy-duty trucks. Proc. of the European Control Conference, 2013: 4118−4123. | 
| 26 |  
											LI S E, GUO Q, XU S, et al Performance enhanced predictive control for adaptive cruise control system considering road elevation information. IEEE Trans. on Intelligent Vehicles, 2017, 2 (3): 150- 160. 
																							 doi: 10.1109/TIV.2017.2736246  | 
										
| 27 | MOSER D, SCHMIED R, WASCHL H, et al Flexible spacing adaptive cruise control using stochastic model predictive control. IEEE Trans. on Control Systems Technology, 2017, 26 (1): 114- 127. | 
| 28 | XIE S B, QU P C, LI J C, et al Study on coordinated control of speed planning and energy management for connected hybrid electric truck in vehicle following scene. Automotive Engineering, 2022, 44 (8): 1136- 1143, 1152. | 
| 29 |  
											SANKAR G S, KIM M, HAN K Data-driven leading vehicle speed forecast and its application to ecological predictive cruise control. IEEE Trans. on Vehicular Technology, 2022, 71 (11): 11504- 11514. 
																							 doi: 10.1109/TVT.2022.3193091  | 
										
| 30 |  
											HE D F, PENG B B Gaussian learning-based fuzzy predictive cruise control for improving safety and economy of connected vehicles. IET Intelligent Transport Systems, 2020, 14 (5): 346- 355. 
																							 doi: 10.1049/iet-its.2019.0452  | 
										
| 31 |  
											PAN C F, HUANG A B, WANG J J, et al Energy-optimal adaptive cruise control strategy for electric vehicles based on model predictive control. Energy, 2022, 241, 122793. 
																							 doi: 10.1016/j.energy.2021.122793  | 
										
| 32 |  
											JIA Y Z, JIBRIN R, ITOH Y, et al Energy-optimal adaptive cruise control for electric vehicles in both time and space domain based on model predictive control. IFAC-PapersOnLine, 2019, 52 (5): 13- 20. 
																							 doi: 10.1016/j.ifacol.2019.09.003  | 
										
| 33 |  
											ZHANG J H, LI Q, CHEN D P Integrated adaptive cruise control with weight coefficient self-tuning strategy. Applied Sciences, 2018, 8 (6): 978. 
																							 doi: 10.3390/app8060978  | 
										
| 34 |  
											LI Z B, DENG Y M, SUN S L Adaptive cruise predictive control based on variable compass operator pigeon-inspired optimization. Electronics, 2022, 11 (9): 1377. 
																							 doi: 10.3390/electronics11091377  | 
										
| 35 |  
											LIU Z Z, YUAN Q, NIE G M, et al A multi-objective model predictive control for vehicle adaptive cruise control system based on a new safe distance model. International Journal of Automotive Technology, 2021, 22 (2): 475- 487. 
																							 doi: 10.1007/s12239-021-0044-0  | 
										
| 36 |  
											KAMAL M A S, MUKAI M, MURATA J, et al Ecological vehicle control on roads with up-down slopes. IEEE Trans. on Intelligent Transportation Systems, 2011, 12 (3): 783- 794. 
																							 doi: 10.1109/TITS.2011.2112648  | 
										
| 37 |  
											WANG Z P, SUN Z Y, LIU P, et al Intelligent decision support platform of new energy vehicles. Journal of Systems Engineering and Electronics, 2022, 33 (4): 785- 791. 
																							 doi: 10.23919/JSEE.2022.000078  | 
										
| 38 |  
											ZHAO L B, LI B H, YUAN H T Cloud edge integrated security architecture of new cloud manufacturing system. Journal of Systems Engineering and Electronics, 2024, 35 (5): 1177- 1189. 
																							 doi: 10.23919/JSEE.2024.000112  | 
										
| 39 | YAN C, XIA Y Q, YANG H J, et al Cloud control for IIoT in a cloud-edge environment. Journal of Systems Engineering and Electronics, 2024, 35 (4): 1013- 1027. | 
| 40 | HE D F, LUO J, LIN D, et al Flexible predictive power-split control for battery-supercapacitor systems of electric vehicles using IVHS. Journal of Systems Engineering and Electronics, 2023, 34 (1): 224- 235. | 
| 41 |  
											LU Y B, LIANG J H, ZHUANG W C, et al Four-wheel independent drive vehicle fault tolerant strategy using stochastic model predictive control with model parameter uncertainties. IEEE Trans. on Vehicular Technology, 2024, 73 (3): 3287- 3299. 
																							 doi: 10.1109/TVT.2023.3321779  | 
										
| 42 |  
											FARAJZADEH-DEVIN M-G, HOSSEINI SANI S K Enhanced two-loop model predictive control design for linear uncertain systems. Journal of Systems Engineering and Electronics, 2021, 32 (1): 220- 227. 
																							 doi: 10.23919/JSEE.2021.000019  | 
										
| 43 |  
											MAYNE D Q Model predictive control: recent developments and future promise. Automatica, 2014, 50 (12): 2967- 2986. 
																							 doi: 10.1016/j.automatica.2014.10.128  | 
										
| 44 |  
											MAYNE D Q, RAWLINGS J B, RAO C V, et al Constrained model predictive control: stability and optimality. Automatica, 2000, 36 (6): 789- 814. 
																							 doi: 10.1016/S0005-1098(99)00214-9  | 
										
| 45 | XU Q, CHANG X Y, WANG J W, et al. Cloud-based connected vehicle control under time-varying delay: stability analysis and controller synthesis. IEEE Trans. on Vehicular Technology, 2023, 72(11): 14074−14086. | 
| [1] | Shuyan LI, Keke WAN, Bolin GAO, Rui LI, Yue WANG, Keqiang LI. Predictive cruise control for heavy trucks based on slope information under cloud control system [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 812-826. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||