Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (6): 1491-1506.doi: 10.23919/JSEE.2024.000124
• SYSTEMS ENGINEERING • Previous Articles
Jian WANG1(), Jingyi ZHU1(
), Hua SHI2,*(
), Huchen LIU3(
)
Received:
2023-07-12
Online:
2024-12-18
Published:
2025-01-14
Contact:
Hua SHI
E-mail:jwang@t.shu.edu.cn;hnkfzjy@163.com;shihuatongji@sina.com;huchenliu@tongji.edu.cn
About author:
Supported by:
Jian WANG, Jingyi ZHU, Hua SHI, Huchen LIU. New density clustering-based approach for failure mode and effect analysis considering opinion evolution and bounded confidence[J]. Journal of Systems Engineering and Electronics, 2024, 35(6): 1491-1506.
Table 1
Failure modes of load-bearing guidance device"
Number | Failure mode | Failure cause | Corrective measure |
1 | Loose of the lower guide rail | Loose bolts | Fastening bolt |
2 | Deformation of the lower guide rail | Material defects | Improvement design |
3 | Position misalignment of the lower guide rail | Inadequate adjustment | Adjust position |
4 | Position misalignment of the upper guide rail | Inadequate adjustment | Adjust position |
5 | Loose of the balance pressure roller | Inadequate adjustment | Adjust pressure roller |
6 | Gap misalignment of the balance pressure roller | Inadequate adjustment | Adjust pressure roller |
7 | Wear of roller | Long time use | Replacing roller |
8 | Abnormal roller position | Inadequate adjustment | Adjust position |
9 | Cracks of carrying portal frame | Material defects | Improvement design |
10 | Cracks in guide sleeve of carrying portal frame | Material defects | Replacing guide sleeve |
11 | Loose of carrying portal frame | Inadequate adjustment | Fastening bolt |
12 | Poor lubrication of long guide pillar | Long-term unlubricated | Add lubricating oil |
13 | Position misalignment of long guide pillar | Inadequate adjustment | Adjust position |
14 | Loose of short guide pillar | Loose support | Sturdy guide pillar |
15 | Poor lubrication of short guide pillar | Lack of lubricating oil | Add lubricating oil |
16 | Position misalignment of the lower swing arm | Inadequate adjustment | Adjust position |
17 | Loose of the lower swing arm | Inadequate reinforcement | Fastening lower swing arm |
Table 2
Interval 2-tuple risk evaluation matrix given by the first expert"
Table 3
Initial collective risk evaluation matrix $ {\tilde {\boldsymbol{A}}^{{\boldsymbol{c}},{\boldsymbol{0}}}} = {(\tilde {\boldsymbol{a}}_{{\boldsymbol{ij}}}^{{\boldsymbol{c}},{\boldsymbol{0}}})_{{\boldsymbol{m}} {\boldsymbol{\times}} {\boldsymbol{n}}}}\left( {{\boldsymbol{t}} {\boldsymbol{=}} {\boldsymbol{0}}} \right) $"
Table 4
Similarity level $ {\bf{SL}}_{{\boldsymbol{ij}}}^{{\boldsymbol{k}},{\boldsymbol{0}}} $ regarding a position in two risk evaluation matrices $ {\tilde {\boldsymbol{A}}^{{\boldsymbol{k}},{\boldsymbol{0}}}} $ and $ {\tilde {\boldsymbol{A}}^{{\boldsymbol{c}},{\boldsymbol{0}}}} $"
F1 | 0.883 | 0.864 | 0.787 | 0.951 | 0.886 | 0.797 | 0.867 | 0.965 | 0.880 | 0.951 | 0.886 | 0.880 | 0.951 | 0.886 | 0.880 | ||||
F2 | 0.803 | 0.712 | 0.939 | 0.781 | 0.788 | 0.895 | 0.943 | 0.871 | 0.957 | 0.864 | 0.788 | 0.957 | 0.864 | 0.788 | 0.957 | ||||
F3 | 0.907 | 0.952 | 0.898 | 0.926 | 0.952 | 0.686 | 0.843 | 0.798 | 0.958 | 0.957 | 0.952 | 0.958 | 0.957 | 0.952 | 0.936 | ||||
F4 | 0.772 | 0.892 | 0.842 | 0.895 | 0.927 | 0.908 | 0.811 | 0.892 | 0.825 | 0.895 | 0.774 | 0.908 | 0.811 | 0.774 | 0.975 | ||||
F5 | 0.949 | 0.965 | 0.976 | 0.967 | 0.951 | 0.976 | 0.967 | 0.965 | 0.976 | 0.967 | 0.951 | 0.941 | 0.967 | 0.951 | 0.941 | ||||
F6 | 0.713 | 0.755 | 0.852 | 0.871 | 0.828 | 0.981 | 0.621 | 0.745 | 0.815 | 0.787 | 0.912 | 0.898 | 0.879 | 0.912 | 0.981 | ||||
F7 | 0.833 | 0.989 | 0.964 | 0.833 | 0.927 | 0.934 | 0.985 | 0.989 | 0.934 | 0.750 | 0.989 | 0.964 | 0.985 | 0.989 | 0.900 | ||||
F8 | 0.953 | 0.927 | 0.841 | 0.953 | 0.823 | 0.743 | 0.880 | 0.761 | 0.841 | 0.931 | 0.823 | 0.826 | 0.953 | 0.823 | 0.743 | ||||
F9 | 0.657 | 0.825 | 0.768 | 0.760 | 0.758 | 0.899 | 0.593 | 0.758 | 0.899 | 0.843 | 0.908 | 0.732 | 0.974 | 0.925 | 0.899 | ||||
F10 | 0.816 | 0.852 | 0.831 | 0.767 | 0.814 | 0.669 | 0.816 | 0.769 | 0.919 | 0.767 | 0.731 | 0.975 | 0.684 | 0.731 | 0.919 | ||||
F11 | 0.909 | 0.874 | 0.950 | 0.927 | 0.959 | 0.950 | 0.924 | 0.959 | 0.947 | 0.924 | 0.876 | 0.947 | 0.924 | 0.876 | 0.883 | ||||
F12 | 0.859 | 0.975 | 0.742 | 0.960 | 0.975 | 0.924 | 0.891 | 0.912 | 0.841 | 0.891 | 0.838 | 0.758 | 0.891 | 0.912 | 0.841 | ||||
F13 | 0.950 | 0.927 | 0.809 | 0.951 | 0.844 | 0.941 | 0.716 | 0.740 | 0.608 | 0.867 | 0.906 | 0.974 | 0.867 | 0.844 | 0.974 | ||||
F14 | 0.867 | 0.989 | 0.929 | 0.883 | 0.910 | 0.904 | 0.883 | 0.827 | 0.947 | 0.883 | 0.840 | 0.947 | 0.950 | 0.840 | 0.904 | ||||
F15 | 0.899 | 0.859 | 0.781 | 0.935 | 0.960 | 0.885 | 0.935 | 0.891 | 0.802 | 0.935 | 0.891 | 0.885 | 0.935 | 0.891 | 0.885 | ||||
F16 | 0.859 | 0.959 | 0.867 | 0.725 | 0.768 | 0.883 | 0.942 | 0.732 | 0.784 | 0.891 | 0.934 | 0.633 | 0.891 | 0.851 | 0.883 | ||||
F17 | 0.754 | 0.711 | 0.859 | 0.829 | 0.789 | 0.960 | 0.663 | 0.789 | 0.891 | 0.958 | 0.873 | 0.891 | 0.913 | 0.789 | 0.891 |
Table 5
Consensual collective evaluation matrix"
Table 6
Distance matrix of the failure modes"
Fi | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
1 | 0.000 | 0.067 | 0.067 | 0.083 | 0.047 | 0.129 | 0.086 | 0.097 | 0.098 | 0.075 | 0.059 | 0.088 | 0.038 | 0.034 | 0.042 | 0.045 | 0.057 |
2 | 0.067 | 0.000 | 0.069 | 0.018 | 0.025 | 0.063 | 0.035 | 0.052 | 0.032 | 0.028 | 0.018 | 0.054 | 0.035 | 0.047 | 0.046 | 0.059 | 0.035 |
3 | 0.067 | 0.069 | 0.000 | 0.073 | 0.069 | 0.119 | 0.070 | 0.095 | 0.088 | 0.093 | 0.076 | 0.046 | 0.062 | 0.074 | 0.049 | 0.095 | 0.086 |
4 | 0.083 | 0.018 | 0.073 | 0.000 | 0.041 | 0.049 | 0.030 | 0.051 | 0.017 | 0.037 | 0.034 | 0.049 | 0.051 | 0.064 | 0.058 | 0.076 | 0.050 |
5 | 0.047 | 0.025 | 0.069 | 0.041 | 0.000 | 0.083 | 0.057 | 0.071 | 0.056 | 0.030 | 0.024 | 0.062 | 0.028 | 0.035 | 0.044 | 0.036 | 0.033 |
6 | 0.129 | 0.063 | 0.119 | 0.049 | 0.083 | 0.000 | 0.066 | 0.073 | 0.035 | 0.061 | 0.074 | 0.084 | 0.097 | 0.107 | 0.106 | 0.110 | 0.085 |
7 | 0.086 | 0.035 | 0.070 | 0.030 | 0.057 | 0.066 | 0.000 | 0.029 | 0.033 | 0.057 | 0.041 | 0.061 | 0.051 | 0.063 | 0.049 | 0.091 | 0.052 |
8 | 0.097 | 0.052 | 0.095 | 0.051 | 0.071 | 0.073 | 0.029 | 0.000 | 0.047 | 0.064 | 0.048 | 0.090 | 0.060 | 0.067 | 0.062 | 0.098 | 0.051 |
9 | 0.098 | 0.032 | 0.088 | 0.017 | 0.056 | 0.035 | 0.033 | 0.047 | 0.000 | 0.042 | 0.044 | 0.062 | 0.064 | 0.076 | 0.072 | 0.087 | 0.057 |
10 | 0.075 | 0.028 | 0.093 | 0.037 | 0.030 | 0.061 | 0.057 | 0.064 | 0.042 | 0.000 | 0.027 | 0.076 | 0.048 | 0.053 | 0.066 | 0.049 | 0.034 |
11 | 0.059 | 0.018 | 0.076 | 0.034 | 0.024 | 0.074 | 0.041 | 0.048 | 0.044 | 0.027 | 0.000 | 0.070 | 0.025 | 0.033 | 0.040 | 0.051 | 0.017 |
12 | 0.088 | 0.054 | 0.046 | 0.049 | 0.062 | 0.084 | 0.061 | 0.090 | 0.062 | 0.076 | 0.070 | 0.000 | 0.072 | 0.087 | 0.070 | 0.095 | 0.086 |
13 | 0.038 | 0.035 | 0.062 | 0.051 | 0.028 | 0.097 | 0.051 | 0.060 | 0.064 | 0.048 | 0.025 | 0.072 | 0.000 | 0.015 | 0.020 | 0.049 | 0.026 |
14 | 0.034 | 0.047 | 0.074 | 0.064 | 0.035 | 0.107 | 0.063 | 0.067 | 0.076 | 0.053 | 0.033 | 0.087 | 0.015 | 0.000 | 0.030 | 0.044 | 0.026 |
15 | 0.042 | 0.046 | 0.049 | 0.058 | 0.044 | 0.106 | 0.049 | 0.062 | 0.072 | 0.066 | 0.040 | 0.070 | 0.020 | 0.030 | 0.000 | 0.067 | 0.044 |
16 | 0.045 | 0.059 | 0.095 | 0.076 | 0.036 | 0.110 | 0.091 | 0.098 | 0.087 | 0.049 | 0.051 | 0.095 | 0.049 | 0.044 | 0.067 | 0.000 | 0.048 |
17 | 0.057 | 0.035 | 0.086 | 0.050 | 0.033 | 0.085 | 0.052 | 0.051 | 0.057 | 0.034 | 0.017 | 0.086 | 0.026 | 0.026 | 0.044 | 0.048 | 0.000 |
Table 7
Cluster results of failure modes"
Cluster | Failure mode |
High-risk cluster | |
Medium-risk cluster | |
Low-risk cluster |
1 |
CAI M, XIAO J M, LUO Q, et al Evidential FMEA method for human reliability assessment. Quality Engineering, 2024, 36 (1): 21- 35.
doi: 10.1080/08982112.2023.2215315 |
2 |
LIU Z M, ZHAO Y J, LIU P D An integrated FMEA framework considering expert reliability for classification and its application in aircraft power supply system. Engineering Applications of Artificial Intelligence, 2023, 123, 106319.
doi: 10.1016/j.engappai.2023.106319 |
3 | SUN J J, LIU Y M, XU J C, et al A probabilistic uncertain linguistic FMEA model based on the extended ORESTE and regret theory. Computers & Industrial Engineering, 2023, 180, 109251. |
4 | ZHA Q B, WANG S, ZHANG W, et al Failure mode and effect analysis (FMEA) approach based on avoidance of aggregation discrepancy. IEEE Trans. on Engineering Management, 2023, 5 (20): 17- 32. |
5 |
ADALI E A, TUS A ARAS method based on Z-numbers in FMEA. Quality and Reliability Engineering International, 2023, 39 (7): 3059- 3081.
doi: 10.1002/qre.3416 |
6 | MOHAMMED A, GHAITHAN A, AL-YAMI F An integrated fuzzy-FMEA risk assessment approach for reinforced concrete structures in oil and gas industry. Journal of Intelligent & Fuzzy Systems, 2023, 44 (1): 1129- 1151. |
7 | KUSHWAHA D K, PANCHAL D, SACHDEVA A Performance evaluation of bagasse-based cogeneration power generation plant utilizing IFLT, IF-FMEA and IF-TOPSIS approaches. International Journal of Quality & Reliability Management, 2024, 41 (2): 698- 731. |
8 |
ERVURAL B, AYAZ H I A fully data-driven FMEA framework for risk assessment on manufacturing processes using a hybrid approach. Engineering Failure Analysis, 2023, 152, 107525.
doi: 10.1016/j.engfailanal.2023.107525 |
9 | LIU P D, SHEN M J, GENG Y S Risk assessment based on failure mode and effects analysis (FMEA) and WASPAS methods under probabilistic double hierarchy linguistic term sets. Computers & Industrial Engineering, 2023, 186, 109758. |
10 |
WAN X X, CEN L H, YUE W C, et al Failure mode and effect analysis with ORESTE method under large group probabilistic free double hierarchy hesitant linguistic environment. Advanced Engineering Informatics, 2024, 59, 102353.
doi: 10.1016/j.aei.2024.102353 |
11 |
ZHANG H The multiattribute group decision making method based on aggregation operators with interval-valued 2-tuple linguistic information. Mathematical and Computer Modelling, 2012, 56 (1/2): 27- 35.
doi: 10.1016/j.mcm.2012.01.001 |
12 |
LIU H C, LI P, YOU J X, et al A novel approach for FMEA: combination of interval 2-tuple linguistic variables and gray relational analysis. Quality and Reliability Engineering International, 2015, 31 (5): 761- 772.
doi: 10.1002/qre.1633 |
13 |
LIU Z W, MING X G A methodological framework with rough-entropy-ELECTRE TRI to classify failure modes for co-implementation of smart PSS. Advanced Engineering Informatics, 2019, 42, 100968.
doi: 10.1016/j.aei.2019.100968 |
14 |
ZHANG Z Y, ZHANG H R, ZHOU L X Zero-carbon measure prioritization for sustainable freight transport using interval 2 tuple linguistic decision approaches. Applied Soft Computing, 2023, 132, 109864.
doi: 10.1016/j.asoc.2022.109864 |
15 |
LIU F, LIAO H C, WU X G, et al Consensus-based failure mode and effect analysis in group decision-making with incomplete weights of risk factors: case study of stereotactic body radiation therapy for lung cancer. Applied Soft Computing, 2023, 142, 110322.
doi: 10.1016/j.asoc.2023.110322 |
16 |
HUA Z, JING X C, MARTINEZ L An ELICIT information-based ORESTE method for failure mode and effect analysis considering risk correlation with GRA-DEMATEL. Information Fusion, 2023, 93, 396- 411.
doi: 10.1016/j.inffus.2023.01.012 |
17 | ZHANG H J, DONG Y C, XIAO J, et al Consensus and opinion evolution-based failure mode and effect analysis approach for reliability management in social network and uncertainty contexts. Reliability Engineering & System Safety, 2021, 208, 107425. |
18 | ZHA Q B, WANG S, ZHANG W, et al Failure mode and effect analysis (FMEA) approach based on avoidance of aggregation discrepancy. IEEE Trans. on Engineering Management, 2023, 56 (2): 43- 39. |
19 |
MANDAL P, SAMANTA S, PAL M Failure mode and effects analysis in consensus-based GDM for surface-guided deep inspiration breath-hold breast radiotherapy for breast cancer under the framework of linguistic Z-number. Information Sciences, 2024, 658, 120016.
doi: 10.1016/j.ins.2023.120016 |
20 |
WANG Y, CAI M, JIAN X L Consensus model of social network group decision-making based on trust relationship among experts and expert reliability. Journal of Systems Engineering and Electronics, 2023, 34 (6): 1576- 1588.
doi: 10.23919/JSEE.2023.000021 |
21 |
DUAN C Y, CHEN X Q, SHI H, et al A new model for failure mode and effects analysis based on k-means clustering within hesitant linguistic environment. IEEE Trans. on Engineering Management, 2022, 69 (5): 1837- 1847.
doi: 10.1109/TEM.2019.2937579 |
22 |
HAN M S, LEE J S Graph-based density peak merging for identifying multi-peak clusters. Applied Soft Computing, 2023, 146, 110657.
doi: 10.1016/j.asoc.2023.110657 |
23 | RODRIGUEZ A L. A clustering by fast search and find of density peaks. Science, 2004, 344(6191): 1492−1496. |
24 |
ZHANG Z X, YANG L, CAO Y N, et al An improved FMEA method based on ANP with probabilistic linguistic term sets. International Journal of Fuzzy Systems, 2022, 24 (6): 2905- 2930.
doi: 10.1007/s40815-022-01302-2 |
25 |
CHEN C, ZHU W X, MA C H, et al Image motion feature extraction for recognition of aggressive behaviors among group-housed pigs. Computers and Electronics in Agriculture, 2017, 142, 380- 387.
doi: 10.1016/j.compag.2017.09.013 |
26 |
SUN L, QIN X Y, DING W P, et al Density peaks clustering based on k-nearest neighbors and self-recommendation. International Journal of Machine Learning and Cybernetics, 2021, 12 (7): 1913- 1938.
doi: 10.1007/s13042-021-01284-x |
27 |
SONG X, LI S H, QI Z Q, et al A spectral clustering algorithm based on attribute fluctuation and density peaks clustering algorithm. Applied Intelligence, 2023, 53 (9): 10520- 10534.
doi: 10.1007/s10489-022-04058-2 |
28 |
ZHANG H, DONG Y, PALOMARES-CARRASCOSA I, et al Failure mode and effect analysis in a linguistic context: a consensus-based multiattribute group decision-making approach. IEEE Trans. on Reliability, 2019, 68 (2): 566- 582.
doi: 10.1109/TR.2018.2869787 |
29 |
HUANG G Q, XIAO L M Failure mode and effect analysis: an interval-valued intuitionistic fuzzy cloud theory-based method. Applied Soft Computing, 2021, 98, 106834.
doi: 10.1016/j.asoc.2020.106834 |
30 |
HUANG J, XU D H, LIU H C, et al A new model for failure mode and effect analysis integrating linguistic Z-numbers and projection method. IEEE Trans. on Fuzzy Systems, 2021, 29 (3): 530- 538.
doi: 10.1109/TFUZZ.2019.2955916 |
31 |
BHATTACHARJEE P, DEY V, MANDAL U K Risk assessment by failure mode and effects analysis (FMEA) using an interval number based logistic regression model. Safety Science, 2020, 132, 104967.
doi: 10.1016/j.ssci.2020.104967 |
32 |
YU Y, YANG J, WU S B A novel FMEA approach for submarine pipeline risk analysis based on IVIFRN and ExpTODIM-PROMETHEE-II. Applied Soft Computing, 2023, 136, 110065.
doi: 10.1016/j.asoc.2023.110065 |
33 | TANG M, LIAO H C Failure mode and effect analysis considering the fairness-oriented consensus of a large group with core-periphery structure. Reliability Engineering & System Safety, 2021, 215, 107821. |
34 |
FAN C H, ZHU Y, LI W, et al Consensus building in linguistic failure mode and effect analysis: a perspective based on prospect theory. Quality and Reliability Engineering International, 2020, 36 (7): 2521- 2546.
doi: 10.1002/qre.2714 |
35 | SHI H, LIU Z, LIU H C A new linguistic preference relation-based approach for failure mode and effect analysis with dynamic consensus reaching process. Information Sciences, 2022, 610 (1): 977- 993. |
36 | XIAO J, WANG X L, ZHANG H J Exploring the ordinal classifications of failure modes in the reliability management: an optimization-based consensus model with bounded vonfidences. Group Decision and Negotiation, 2022, 21 (1): 49- 80. |
37 |
LIU H C, YOU J X, LI P, et al Failure mode and effect analysis under uncertainty: an integrated multiple criteria decision making approach. IEEE Trans. on Reliability, 2016, 65 (3): 1380- 1392.
doi: 10.1109/TR.2016.2570567 |
38 |
GHOUSHCHI S J, YOUSEFI S, KHAZAEILI M An extended FMEA approach based on the Z-MOORA and fuzzy BWM for prioritization of failures. Applied Soft Computing, 2019, 81, 105505.
doi: 10.1016/j.asoc.2019.105505 |
39 |
PINTELON L, DI NARDO M, MURINO T, et al A new hybrid MCDM approach for RPN evaluation for a medical device prototype. Quality and Reliability Engineering International, 2021, 37 (5): 2189- 2212.
doi: 10.1002/qre.2852 |
40 |
NIE W B, LIU W D, WU Z Y, et al Failure mode and effects analysis by integrating Bayesian fuzzy assessment number and extended gray relational analysis-technique for order preference by similarity to ideal solution method. Quality and Reliability Engineering International, 2019, 35 (6): 1676- 1697.
doi: 10.1002/qre.2468 |
41 | HUANG J, LIU H C, DUAN C Y, et al An improved reliability model for FMEA using probabilistic linguistic term sets and TODIM method. Annals of Operations Research, 2019, 312 (1): 235- 258. |
42 | SAGNAK M, KAZANCOGLU Y, OZKAN O Y D, et al Decision-making for risk evaluation: integration of prospect theory with failure modes and effects analysis (FMEA). International Journal of Quality & Reliability Management, 2021, 37 (6/7): 939- 956. |
43 | RATHORE R, THAKKAR J J, JHA J K Evaluation of risks in foodgrains supply chain using failure mode effect analysis and fuzzy VIKOR. International Journal of Quality & Reliability Management, 2020, 38 (2): 551- 580. |
44 | LI Y, LIU P D, LI G An asymmetric cost consensus based failure mode and effect analysis method with personalized risk attitude information. Reliability Engineering & System Safety, 2023, 235, 109196. |
45 |
LIU H C, CHEN X Q, YOU J X, et al A new integrated approach for risk evaluation and classification with dynamic expert weights. IEEE Trans. on Reliability, 2021, 70 (1): 163- 174.
doi: 10.1109/TR.2020.2973403 |
46 |
HERRERA F, MARTINEZ L A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. on Fuzzy Systems, 2000, 8 (6): 746- 752.
doi: 10.1109/91.890332 |
47 |
LIU H C, LIN Q L, WU J Dependent interval 2-tuple linguistic aggregation operators and their application to multiple attribute group decision making. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2014, 22 (5): 717- 735.
doi: 10.1142/S0218488514500366 |
48 |
ZHANG H, PALOMARES I, DONG Y, et al Managing non-cooperative behaviors in consensus-based multiple attribute group decision making: an approach based on social network analysis. Knowledge-Based Systems, 2018, 162, 29- 45.
doi: 10.1016/j.knosys.2018.06.008 |
49 |
VICTOR P, CORNELIS C, DE COCK M, et al Practical aggregation operators for gradual trust and distrust. Fuzzy Sets and Systems, 2011, 184 (1): 126- 147.
doi: 10.1016/j.fss.2010.10.015 |
50 | TAN X, ZHU J J, PALOMARES I, et al On consensus reaching process based on social network analysis in uncertain linguistic group decision making: exploring limited trust propagation and preference modification attitudes. Information Fusion, 2022, 78 (6): 180- 198. |
51 |
YAGER R Quantifier guided aggregation using OWA operators. International Journal of Intelligent Systems, 1998, 11 (1): 49- 73.
doi: 10.1002/(SICI)1098-111X(199601)11:1<49::AID-INT3>3.0.CO;2-Z |
52 |
ZHA Q B, DONG Y C, ZHANG H J, et al A personalized feedback mechanism based on bounded confidence learning to support consensus reaching in group decision making. IEEE Trans. on Systems, Man, and Cybernetics: Systems, 2021, 51 (6): 3900- 3910.
doi: 10.1109/TSMC.2019.2945922 |
53 | ZHU J H, CHEN Z S, SHUAI B, et al Failure mode and effect analysis: a three-way decision approach. Engineering Applications of Artificial Intelligence, 2021, 106 (5): 104505. |
54 | LO H W, LIOU J J H, HUANG C N, et al A novel failure mode and effect analysis model for machine tool risk analysis. Reliability Engineering & System Safety, 2019, 183, 173- 183. |
55 |
YANG H J, LI G F, HE J L, et al Improved FMEA based on IVF and fuzzy VIKOR method: a case study of workpiece box system of CNC gear milling machine. Quality and Reliability Engineering International, 2021, 37 (6): 2478- 2498.
doi: 10.1002/qre.2870 |
56 |
WANG L, HU Y P, LIU H C, et al A linguistic risk prioritization approach for failure mode and effects analysis: a case study of medical product development. Quality and Reliability Engineering International, 2019, 35 (6): 1735- 1752.
doi: 10.1002/qre.2472 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||