Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (3): 694-700.doi: 10.23919/JSEE.2025.000006
• DEFENCE ELECTRONICS TECHNOLOGY • Previous Articles
Jinghu SUN1(), Jiahuan LIU2(
), Wenqiang WEI3(
), Xianxiang YU3(
), Guolong CUI3,*(
), Xiuyin ZHANG1(
)
Received:
2024-06-03
Accepted:
2024-12-18
Online:
2025-06-18
Published:
2025-07-10
Contact:
Guolong CUI
E-mail:Jinghu.Sun@desaysv.com;Jiahuan.Liu@desaysv.com;wenqiangwei@std.uestc.edu.cn;xianxiangyu@uestc.edu.cn;cuiguolong@uestc.edu.cn;eexyz@scut.edu.cn
About author:
Jinghu SUN, Jiahuan LIU, Wenqiang WEI, Xianxiang YU, Guolong CUI, Xiuyin ZHANG. Far-field calibration of automotive millimeter wave radar via near-field implementation[J]. Journal of Systems Engineering and Electronics, 2025, 36(3): 694-700.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
16 |
KEIZER W P M N Fast and accurate array calibration using a synthetic array approach. IEEE Trans. on Antennas and Propagation, 2011, 59 (11): 4115- 4122.
doi: 10.1109/TAP.2011.2164171 |
17 |
LIU J F, WU X B, EMERY W J, et al Direction-of-arrival estimation and sensor array error calibration based on blind signal separation. IEEE Signal Processing Letters, 2017, 24 (1): 7- 11.
doi: 10.1109/LSP.2016.2632750 |
18 | STEPHAN M, WANG K, REISSLAND T, et al. Evaluation of antenna calibration and DOA estimation algorithms for FMCW radars. Proc. of the 49th European Microwave Conference, 2019: 944–947. |
19 |
YOON H J, MIN B W Improved rotating-element electric-field vector method for fast far-field phased array calibration. IEEE Trans. on Antennas and Propagation, 2021, 69 (11): 8021- 8026.
doi: 10.1109/TAP.2021.3083796 |
20 |
TAKAHASHI T, KONISHI Y, MAKINO S, et al Fast measurement technique for phased array calibration. IEEE Trans. on Antennas and Propagation, 2008, 56 (7): 1888- 1899.
doi: 10.1109/TAP.2008.924682 |
21 |
FADAMIRO A O, SEMOMHE A A H, FAMORIJI O J, et al A multiple element calibration algorithm for active phased array antenna. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2019, 4, 163- 170.
doi: 10.1109/JMMCT.2019.2923113 |
22 |
MAKHOUL E, BROQUETAS A, LOPEZ-DEKKER F, et al Evaluation of the internal calibration methodologies for spaceborne synthetic aperture radars with active phased array antennas. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5 (3): 909- 918.
doi: 10.1109/JSTARS.2012.2199087 |
23 |
WANG F, JIANG R X, TIAN X, et al An efficient near-field model gain-phase self-calibration method for uniform rectangular arrays. IEEE Journal of Oceanic Engineering, 2022, 47 (4): 1129- 1142.
doi: 10.1109/JOE.2022.3164721 |
24 | YANIK M E, WANG D, TORLAK M. 3-D MIMO-SAR imaging using multi-chip cascaded millimeter-wave sensors. Proc. of the IEEE Global Conference on Signal and Information Processing, 2019. DOI: 10.1109/ GlobalSIP45357.2019.8969133. |
25 | LIU K, ZHU X C, CAO Y, et al. Near field phase correction for cascaded radar. Proc. of the Signal Processing Symposium, 2023: 105–110. |
26 | LIU K, ZHANG Y H, CAO Y, et al. MIMO-SAR image antialiasing for cascaded mmWave radar sensor. Proc. of the IEEE Radar Conference, 2023. DOI: 10.1109/RadarConf2351548.2023.10149686. |
27 | CUI X, WANG X H, ZHANG X K, et al. Design of cascaded millimeter wave radar for concealed item imaging. Proc. of the IEEE MTT-S International Wireless Symposium, 2023. DOI:10.1109/IWS58240.2023. 10222627. |
28 | HAI X, JIN G, CAI Z R, et al. Performance analysis of DOA estimation for texas instruments mmWave radar sensors. Proc. of the Global Reliability and Prognostics and Health Management, 2022. DOI: 10.1109/PHM-Yantai55411.2022.9942007. |
29 | YANG J, CUI G L, YU X X, et al. Passive location for coherent near-field sources with non-uniform sparse linear array. Proc. of the IEEE Radar Conference, 2017: 1338–1343. |
30 | WEI W Q, LIU R T, YU X X, et al Fast single-snapshot DOA estimation of coherent sources for distributed mmWave radar system. IEEE Trans. on Circuits and Systems II: Express Briefs, 2022, 69 (8): 3615- 3619. |
31 | WEI W Q, LIU R T, YU X X, et al. DOA estimation of distributed mmWave radar system via fast iterative adaptive approach. Proc. of the International Conference on Control, Automation and Information Sciences, 2021: 414–418. |
1 |
LI G H, YUE D W, JIN S N Spatially correlated rayleigh fading characteristics of RIS-aided mmWave MIMO communications. IEEE Communications Letters, 2023, 27 (8): 2222- 2226.
doi: 10.1109/LCOMM.2023.3289959 |
2 |
WANG Z H, LI M, LIU R, et al Joint user association and hybrid beamforming designs for cell-free mmWave MIMO communications. IEEE Trans. on Communications, 2022, 70 (11): 7307- 7321.
doi: 10.1109/TCOMM.2022.3211966 |
3 |
GONG S Q, LIU H, DAI H, et al Hybrid analog-digital transceiver design for RIS–assisted mmWave MIMO communications. IEEE Wireless Communications Letters, 2022, 11 (12): 2620- 2624.
doi: 10.1109/LWC.2022.3212039 |
4 |
RAZAVIEH A, CHEN Y, ETHIRAJAN T, et al Extremely-low threshold voltage finfet for 5G mmWave applications. IEEE Journal of the Electron Devices Society, 2021, 9, 165- 169.
doi: 10.1109/JEDS.2020.3046953 |
5 |
ABU–SHABAN Z, WYMEERSCH H, ABHAYAPALA T, et al Single-anchor two-way localization bounds for 5G mmWave systems. IEEE Trans. on Vehicular Technology, 2020, 69 (6): 6388- 6400.
doi: 10.1109/TVT.2020.2987039 |
6 |
DUONG N S, NGUYEN Q T, DINHTHI T M OMP-based channel estimation with dynamic grid for mmWave MIMO positioning systems. IEEE Communications Letters, 2023, 27 (10): 2623- 2627.
doi: 10.1109/LCOMM.2023.3303453 |
7 |
WU T, PAN C H, PAN Y J, et al Joint angle estimation error analysis and 3-D positioning algorithm design for mmWave positioning system. IEEE Internet of Things Journal, 2024, 11 (2): 2181- 2197.
doi: 10.1109/JIOT.2023.3292431 |
8 |
GANTE J, SOUSA L, FALCAO G Dethroning GPS: low-power accurate 5G positioning systems using machine learning. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10 (2): 240- 252.
doi: 10.1109/JETCAS.2020.2991024 |
9 |
FANG Z X, WEI Z Q, CHEN X, et al Stochastic geometry for automotive radar interference with RCS characteristics. IEEE Wireless Communications Letters, 2020, 9 (11): 1817- 1820.
doi: 10.1109/LWC.2020.3003064 |
10 |
ZHANG Y C, WU D D, HE Z, et al Characterization of millimeter-wave wideband FMCW signals based on a precisely synchronized NVNA for automotive radar applications. IEEE Trans. on Microwave Theory and Techniques, 2023, 71 (1): 250- 262.
doi: 10.1109/TMTT.2022.3210236 |
11 |
XU Z H, YUAN M An interference mitigation technique for automotive millimeter wave radars in the tunable Q-factor wavelet transform domain. IEEE Trans. on Microwave theory and Techniques, 2021, 69 (12): 5270- 5283.
doi: 10.1109/TMTT.2021.3121322 |
12 |
WANG Y, HUANG Y, WEN C, et al Mutual interference mitigation for automotive FMCW radar with time and frequency domain decomposition. IEEE Trans. on Microwave Theory and Techniques, 2023, 71 (11): 5028- 5044.
doi: 10.1109/TMTT.2023.3275816 |
13 |
FUHRMANN D R Estimation of sensor gain and phase. IEEE Trans. on Signal Processing, 1994, 42 (1): 77- 87.
doi: 10.1109/78.258123 |
14 |
LIU A F, LIAO G S, ZENG C, et al An eigenstructure method for estimating DOA and sensor gain-phase errors. IEEE Trans. on Signal Processing, 2011, 59 (12): 5944- 5956.
doi: 10.1109/TSP.2011.2165064 |
15 |
CAO S H, YE Z F, XU D Y, et al A hadamard product based method for DOA estimation and gain-phase error calibration. IEEE Trans. on Aerospace and Electronic Systems, 2013, 49 (2): 1224- 1233.
doi: 10.1109/TAES.2013.6494409 |
[1] | Shuang WU, Ye YUAN, Weike ZHANG, Naichang YUAN. Super-resolution DOA estimation for correlated off-grid signals via deep estimator [J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1096-1107. |
[2] | Ping LI, Jianfeng LI, Gaofeng ZHAO. Low complexity DOA estimation for massive UCA with single snapshot [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 22-27. |
[3] | Yanan DU, Hongyuan GAO, Menghan CHEN. Direction of arrival estimation method based on quantum electromagnetic field optimization in the impulse noise [J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 527-537. |
[4] | Jingjing Cai, Dan Bao, and Peng Li. DOA estimation via sparse recovering from the smoothed covariance vector [J]. Systems Engineering and Electronics, 2016, 27(3): 555-561. |
[5] | Jiaqi Zhen and Zhifang Wang. DOA estimation method for wideband signals by block sparse reconstruction [J]. Systems Engineering and Electronics, 2016, 27(1): 20-. |
[6] | Ying Xiong, Gaoyi Zhang, Bin Tang, and Hao Cheng. Blind identification and DOA estimation for array sources in presence of scattering [J]. Journal of Systems Engineering and Electronics, 2011, 22(3): 393-397. |
[7] | Weijian Si*, Xicai Si, and Zhiyu Qu. New method for passive radar seeker to antagonize non-coherent radar decoy [J]. Journal of Systems Engineering and Electronics, 2010, 21(3): 397-403. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||