
Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (3): 727-736.doi: 10.23919/JSEE.2022.000067
• CONTROL THEORY AND APPLICATION • Previous Articles Next Articles
Jing GUI, Heming ZHAO*(
), Xiang XU(
)
Received:2021-04-20
Online:2022-06-18
Published:2022-06-24
Contact:
Heming ZHAO
E-mail:hemzhao@163.com;hsianghsu@163.com
About author:Supported by:Jing GUI, Heming ZHAO, Xiang XU. Heading constraint algorithm for foot-mounted PNS using low-cost IMU[J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 727-736.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Simulation parameter settings"
| Symbol | Parameter | Value |
| | Step length/m | 1.2 |
| | Max height/m | 0.15 |
| | Swing phase cycle/s | 1.0 |
| | Stance phase cycle/s | 0.5 |
| | Max pitch/rad | 0.6 |
| | Turning cycle/s | 0.5 |
| | Gyroscope bias/(°/s) | |
| | Accelerometer bias/(m/s2) | |
| | Gyroscope noise/ | |
| | Accelerometer noise/ | |
| | Initial yaw/(°) | 0 |
| | Sample frequency/Hz | 100 |
Table 2
MPU9250 sensor performance parameters"
| Parameter | Gyroscope | Accelerometer |
| Maximum range | | |
| Sensitivity | | |
| Non-linearity | 0.2 % | 0.5 % |
| Initial bias | | |
| Noise density | | |
Table 3
Comparison of walking experiment results for different methods"
| Algorithm | Total distance / m | End-point / m | Positioning error /% | |||||
| Test1 | Test2 | Test1 | Test2 | Test1 | Test2 | |||
| Proposed method | 110 | 590 | (0.48,?0.58) | (?0.86,?1.73) | 0.68 | 0.33 | ||
| ZUPT+ZARU | 110 | 590 | (?1.97,?0.12) | (42.65,59.23) | 1.79 | 12.37 | ||
| ZUPT only | 110 | 590 | (?8.10,4.82) | (56.41,58.26) | 8.56 | 13.74 | ||
| 1 | HARLE R A survey of indoor inertial positioning systems for pedestrians. IEEE Communications Surveys & Tutorials, 2013, 15 (3): 1281- 1293. |
| 2 | FALLAH N, APOSTOLOPOULOS I, BEKRIS K, et al Indoor human navigation systems: a survey. Interacting with Computers, 2013, 25 (1): 21- 33. |
| 3 | HONKAVIRTA V, PERALA T, ALI-LOYTTY S, et al A comparative survey of WLAN location fingerprinting methods. Proc. of the 6th Workshop on Positioning, Navigation and Communication, 2009, 243- 251. |
| 4 |
ELLOUMI W, LATOUI A, CANALS R, et al Indoor pedestrian localization with a smartphone: a comparison of inertial and vision-based methods. IEEE Sensors Journal, 2016, 16 (13): 5376- 5388.
doi: 10.1109/JSEN.2016.2565899 |
| 5 |
HSU Y L, WANG J S, CHANG C W A wearable inertial pedestrian navigation system with quaternion-based extended Kalman filter for pedestrian localization. IEEE Sensors Journal, 2017, 17 (10): 3193- 3206.
doi: 10.1109/JSEN.2017.2679138 |
| 6 |
ZHAO Y L, LIANG J Q, SHA X P, et al Estimation of pedestrian altitude inside a multi-story building using an integrated micro-IMU and barometer device. IEEE Access, 2019, 7, 84680- 84689.
doi: 10.1109/ACCESS.2019.2924664 |
| 7 | MADGWICK S O H, HARRISON A J L, VAIDYANATHAN R Estimation of IMU and MARG orientation using a gradient descent algorithm. Proc. of the IEEE International Conference on Rehabilitation Robotics, 2011, 1- 7. |
| 8 |
GROVES P D Navigation using inertial sensors. IEEE Aerospace and Electronic Systems Magazine, 2015, 30 (2): 42- 69.
doi: 10.1109/MAES.2014.130191 |
| 9 |
FOXLIN E Pedestrian tracking with shoe-mounted inertial sensors. IEEE Computer Graphics and Applications, 2005, 25 (6): 38- 46.
doi: 10.1109/MCG.2005.140 |
| 10 |
PARK S K, SUH Y S A zero velocity detection algorithm using inertial sensors for pedestrian navigation systems. Sensors, 2010, 10 (10): 9163- 9178.
doi: 10.3390/s101009163 |
| 11 | WAHLSTROM J, SKOG I Fifteen years of progress at zero velocity: a review. IEEE Sensors Journal, 2020, 21 (2): 1139- 1151. |
| 12 | TJHAI C. Integration of multiple low-cost wearable inertial/magnetic sensors and kinematics of lower limbs for improving pedestrian navigation systems. Alberta: University of Calgary, 2019. |
| 13 |
NORRDINE A, KASMI Z, BLANKENBACH J Step detection for ZUPT-aided inertial pedestrian navigation system using foot-mounted permanent magnet. IEEE Sensors Journal, 2016, 16 (17): 6766- 6773.
doi: 10.1109/JSEN.2016.2585599 |
| 14 |
JIMENEZ A R, SECO F, ZAMPELLA F, et al PDR with a foot-mounted IMU and ramp detection. Sensors, 2011, 11 (10): 9393- 9410.
doi: 10.3390/s111009393 |
| 15 |
BORENSTEIN J, OJEDA L Heuristic drift elimination for personnel tracking systems. The Journal of Navigation, 2010, 63 (4): 591- 606.
doi: 10.1017/S0373463310000184 |
| 16 | JIMENEZ A R, SECO F, ZAMPELLA F, et al Improved heuristic drift elimination (iHDE) for pedestrian navigation in complex buildings. Proc. of the International Conference on Indoor Positioning and Indoor Navigation, 2011, 1- 8. |
| 17 |
SKOG I, HANDEL P, NILSSON J O, et al Zero-velocity detection—an algorithm evaluation. IEEE Trans. on Biomedical Engineering, 2010, 57 (11): 2657- 2666.
doi: 10.1109/TBME.2010.2060723 |
| 18 | CGROVES P D. Principles of GNSS, inertial, and multi-sensor integrated navigation systems. USA: Artech House Verlag, 2013. |
| 19 | FISCHER C, SUKUMAR P T, HAZAS M Tutorial: implementing a pedestrian tracker using inertial sensors. IEEE Pervasive Computing, 2012, 12 (2): 17- 27. |
| 20 | SKOG I, HANDEL P A low-cost GPS aided inertial navigation system for vehicle applications. Proc. of the 13th European Signal Processing Conference, 2005, 1- 4. |
| 21 | WANG Y S, CHERNYSHOFF A, SHKEL A M Study on estimation errors in ZUPT-aided pedestrian inertial navigation due to IMU noises. IEEE Trans. on Aerospace and Electronic Systems, 2019, 56 (3): 2280- 2291. |
| 22 | ZHU M, WU Y, LUO S. A pedestrian navigation system by low-cost dual foot-mounted IMUs and inter-foot ranging. Proc. of the German Institute of Navigation Inertial Sensors and Systems, 2020: 1−20. |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||