
Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (4): 812-826.doi: 10.23919/JSEE.2022.000081
• CLOUD CONTROL SYSTEMS • Previous Articles Next Articles
					
													Shuyan LI1(
), Keke WAN1, Bolin GAO2,*(
), Rui LI1(
), Yue WANG2(
), Keqiang LI2
												  
						
						
						
					
				
Received:2022-03-01
															
							
															
							
															
							
																	Online:2022-08-30
															
							
																	Published:2022-08-30
															
						Contact:
								Bolin GAO   
																	E-mail:lishuyan@cau.edu.cn;gaobolin@tsinghua.edu.cn;lirui@cau.edu.cn;wyue@mail.tsinghua.edu.cn
																					About author:Supported by:Shuyan LI, Keke WAN, Bolin GAO, Rui LI, Yue WANG, Keqiang LI. Predictive cruise control for heavy trucks based on slope information under cloud control system[J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 812-826.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Table of conditions"
| Condition series | Value of relevant signals | 
| Condition 1 | CPCC switch=1  and data format=1 and network status=1 and GPS signal quality=1 and vehicle speed  |  
| Condition 2 | CC switch=0 | 
| Condition 3 | CPCC switch=0  or data format=0 or network status=0 or GPS signal quality=0 or vehicle speed  |  
| Condition 4 | Same as Condition 1 | 
| Condition 5 | Same as Condition 2 | 
| Condition 6 | CC switch=1 | 
Table 2
Parameters of the truck"
| Item | Parameter | Symbol | Value | 
| Engine | Engine speed range/(r/min) |   |  [700 2100] | 
| Engine torque range/Nm |   |  [?160 2549] | |
| Moment of  inertia /kgm2  |    |  [2.5 3.5] | |
| Driveline | Final drive ratio |   |  3.7 | 
| Transmission ratio |   |  [12.26,9.56,7.36,5.8,  4.52,3.53,2.71,2.12, 1.62,1.29,1,0.78]  |  |
| Final drive efficiency |   |  0.95 | |
| Transmission efficiency |   |  [0.966,0.966,0.969,0.971,  0.975,0.977,0.985,0.988, 0.988,0.989,0.989,0.99]  |  |
| Longitudinal force | Vehicle curb mass/kg |   |  49000 | 
| Effective tire radius/m |   |  0.459 | |
| Frontal area/m2 |   |  [5.0 10.0] | |
| Air drag coefficient |   |  [0.5 1.0] | |
| Rolling resistance coefficient |   |  [0.010 0.018] | 
Table 4
Simulation parameters of the CPCC system"
| Parameter | Symbol | Value | 
| Predictive horizon/km | Y | 3 | 
| Segmentation horizon/km | X | 9 | 
| Iteration distance/m |   |  200 | 
| Discrete interval /(m/s) |   |  0.2 | 
| Reference velocity /(km/h) |   |  70 | 
| Engine min rpm /(r/min) |   |  1000 | 
| Engine max rpm /(r/min) |   |  1800 | 
| Min gear position |   |  10 | 
| Max gear position |   |  12 | 
| Maximum acceleration /(m/s2) |   |  0.4 | 
| Minimum acceleration /(m/s2) |   |  ?0.4 | 
| 1 |  
											XIA Y Q Cloud control systems. IEEE/CAA Journal of Automatica Sinica, 2015, 2 (2): 134- 142. 
																							 doi: 10.1109/JAS.2015.7081652  | 
										
| 2 |  
											CHU W B, WUNIRI Q, DU X P, et al Cloud control system architectures, technologies and applications on intelligent and connected vehicles: a review. Chinese Journal of Mechanical Engineering, 2021, 34 (1): 1- 23. 
																							 doi: 10.1186/s10033-020-00524-5  | 
										
| 3 |  
											YANG S C, ZHANG Z J, CAO R, et al Implementation for a cloud battery management system based on the CHAIN framework. Energy and AI, 2021, 5, 100088. 
																							 doi: 10.1016/j.egyai.2021.100088  | 
										
| 4 |  
											XU X L, WU J X, YANG G, et al Low-power task scheduling algorithm for large-scale cloud data centers. Journal of Systems Engineering and Electronics, 2013, 24 (5): 870- 878. 
																							 doi: 10.1109/JSEE.2013.00101  | 
										
| 5 |  
											XU X L, ZHANG Q T, MOU Y Q, et al Server load prediction algorithm based on CM-MC for cloud systems. Journal of Systems Engineering and Electronics, 2018, 29 (5): 1069- 1078. 
																							 doi: 10.21629/JSEE.2018.05.17  | 
										
| 6 | LI K Q, LI J W, CHANG X Y, et al Principles and typical applications of cloud control system for intelligent and connected vehicles. Journal of Automotive Safety and Energy, 2020, 11 (3): 261- 275. | 
| 7 | HELLSTROM E Explicit use of road topography for model predictive cruise control in heavy trucks. Linkoping: Linkoping University, 2005. | 
| 8 | LATTEMANN F, NEISS K, TERWEN S, et al The predictive cruise control–a system to reduce fuel consumption of heavy duty trucks. SAE Transactions, 2004, 113 (2): 139- 146. | 
| 9 | LI K Q, CHANG X Y, LI J W Cloud control system for intelligent and connected vehicles and its application. Automotive Engineering, 2020, 42 (12): 1595- 1605. | 
| 10 | XIA Y Q From networked control systems to cloud control systems. Proc. of the 31st Chinese Control Conference, 2012, 5878- 5883. | 
| 11 | KHATTAB A, ABDELGAWAD A, YELMARTHI K Design and implementation of a cloud-based IoT scheme for precision agriculture. Proc. of the 28th International Conference on Microelectronics, 2016, 201- 204. | 
| 12 | ET-TAIBI B, ABID M R, BOUMHIDI I, et al Smart agriculture as a cyber physical system: a real-world deployment. Proc. of the 4th International Conference on Intelligent Computing in Data Sciences, 2020, 1- 7. | 
| 13 |  
											HU L, MIAO Y M, WU G X, et al iRobot-Factory: an intelligent robot factory based on cognitive manufacturing and edge computing. Future Generation Computer Systems, 2019, 90, 569- 577. 
																							 doi: 10.1016/j.future.2018.08.006  | 
										
| 14 |  
											CHEN G G, WANG P, FENG B, et al The framework design of smart factory in discrete manufacturing industry based on cyber-physical system. International Journal of Computer Integrated Manufacturing, 2020, 33 (1): 79- 101. 
																							 doi: 10.1080/0951192X.2019.1699254  | 
										
| 15 | XIA Y Q, YAN C, WANG X J, et al Intelligent transportation cyber-physical cloud control systems. Acta Automatica Sinica, 2019, 45 (1): 132- 142. | 
| 16 |  
											OZATAY E, ONORI S, WOLLAEGER J, et al Cloud-based velocity profile optimization for everyday driving: a dynamic-programming-based solution. IEEE Trans. on Intelligent Transportation Systems, 2014, 15 (6): 2491- 2505. 
																							 doi: 10.1109/TITS.2014.2319812  | 
										
| 17 |  
											HAMEDNIA A, MURGOVSKI N, FREDRIKSSON J Predictive velocity control in a hilly terrain over a long look-ahead horizon. IFAC-PapersOnLine, 2018, 51 (31): 485- 492. 
																							 doi: 10.1016/j.ifacol.2018.10.107  | 
										
| 18 |  
											SCHWARZKOPF A B, LEIPNIK R B Control of highway vehicles for minimum fuel consumption over varying terrain. Transportation Research, 1977, 11 (4): 279- 286. 
																							 doi: 10.1016/0041-1647(77)90093-4  | 
										
| 19 | LIN Y C, HSU H C, KUO I C An eco-cruising control systems using nonlinear predictive control approach. Proc. of the International Automatic Control Conference, 2016, 56- 94. | 
| 20 |  
											WEIBMANN A, GORGES D, LIN X H Energy-optimal adaptive cruise control based on model predictive control. IFAC-PapersOnLine, 2017, 50 (1): 12563- 12568. 
																							 doi: 10.1016/j.ifacol.2017.08.2196  | 
										
| 21 | GUO L L, GAO B Z, GAO Y, et al Optimal energy management for HEVs in eco-driving applications using bi-level MPC. IEEE Trans. on Intelligent Transportation Systems, 2016, 18 (8): 2153- 2162. | 
| 22 |  
											KUMAR R, IVANTYSYNOVA M An instantaneous optimization based power management strategy to reduce fuel consumption in hydraulic hybrids. International Journal of Fluid Power, 2011, 12 (2): 15- 25. 
																							 doi: 10.1080/14399776.2011.10781027  | 
										
| 23 |  
											HUANG Y J, YIN C L, ZHANG J W Design of an energy management strategy for parallel hybrid electric vehicles using a logic threshold and instantaneous optimization method. International Journal of Automotive Technology, 2009, 10 (4): 513- 521. 
																							 doi: 10.1007/s12239-009-0059-4  | 
										
| 24 |  
											HELLSTROM E, ASLUND J, NIELSEN L Design of an efficient algorithm for fuel-optimal look-ahead control. Control Engineering Practice, 2010, 18 (11): 1318- 1327. 
																							 doi: 10.1016/j.conengprac.2009.12.008  | 
										
| 25 |  
											HELLSTROM E, IVARSSON M, NIELSEN L Look-ahead control for heavy trucks to minimize trip time and fuel consumption. IFAC Proceedings Volumes, 2007, 40 (10): 439- 446. 
																							 doi: 10.3182/20070820-3-US-2918.00060  | 
										
| 26 | CONG X Y, ZHANG Y G, WANG C P, et al Look-ahead gear-shifting strategy on ramps for heavy trucks with automated mechanical transmission. Advances in Mechanical Engineering, 2019, 11 (1): 1- 13. | 
| 27 | HELLSTROM E, FROBERG A, NIELSEN L A real-time fuel-optimal cruise controller for heavy trucks using road topography information. Proc. of the SAE World Congress & Exhibition, 2006, 1- 8. | 
| 28 | LIN Y C, NGUYEN H L T, BALAS V E, et al Adaptive prediction-based control for an ecological cruise control system on curved and hilly roads. Journal of Intelligent & Fuzzy Systems, 2020, 38 (5): 6129- 6144. | 
| 29 | XU S B, LI S E, CHENG B, et al Instantaneous feedback control for a fuel-prioritized vehicle cruising system on highways with a varying slope. IEEE Trans. on Intelligent Transportation Systems, 2016, 18 (5): 1210- 1220. | 
| 30 | QU L H Ecological cruising control strategy design of electric vehicle based on prediction of road slopes. Nanjing: Southeast University, 2019. | 
| 31 | GILLESPIE T D Fundamentals of vehicle dynamics. New York: SAE International, 2021. | 
| 32 |  
											ZHANG J, JIN H Optimized calculation of the economic speed profile for slope driving: based on iterative dynamic programming. IEEE Trans. on Intelligent Transportation Systems, 2022, 23 (4): 3313- 3323. 
																							 doi: 10.1109/TITS.2020.3035610  | 
										
| No related articles found! | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||