| 1 | SHEN T, ZHANG F, CHENG J W. A comprehensive overview of knowledge graph completion. Knowledge-Based Systems, 2022, 255: 109597. | 
																													
																							| 2 | XUE B C, ZOU L Knowledge graph quality management: a comprehensive survey. IEEE Trans. on Knowledge and Data Engineering, 2023, 35 (5): 4969- 4988. | 
																													
																							| 3 | PRASOJO R E, DARARI F, RAZNIEWSKI S, et al. Managing and consuming completeness information for wikidata using COOL-WD. Proc. of the 7th International Workshop on Consuming Linked Data, Co-located with the 15th International Semantic Web Conference, 2016. https://ceur-ws.org/Vol1666/paper-02.pdf. | 
																													
																							| 4 | FARBER M, BARTSCHERER F, MENNE C, et al Linked data quality of dbpedia, freebase, opencyc, wikidata, and yago. Semantic Web, 2018, 9 (1): 77- 129. | 
																													
																							| 5 | HOGAN A, BLOMQVIST E, COCHEA M, et al Knowledge graphs. ACM Computing Surveys, 2021, 54 (4): 1- 37. | 
																													
																							| 6 | BRACK A, HOPPE A, STOCKER M, et al Analysing the requirements for an open research knowledge graph: use cases, quality requirements, and construction strategies. International Journal on Digital Libraries, 2022, 23 (1): 33- 55. doi: 10.1007/s00799-021-00306-x
 | 
																													
																							| 7 | WANG X Y, CHEN L Z, BAN T Y, et al Knowledge graph quality control: a survey. Fundamental Research, 2021, 1 (5): 607- 626. doi: 10.1016/j.fmre.2021.09.003
 | 
																													
																							| 8 | ISSA S, ADEKUNLE O, HAMDI F, et al Knowledge graph completeness: a systematic literature review. IEEE Access, 2021, 9, 31322- 31339. doi: 10.1109/ACCESS.2021.3056622
 | 
																													
																							| 9 | LAJUS J, SUCHANEK F M. Are all people married? Determining obligatory attributes in knowledge bases. Proc. of the World Wide Web Conference, 2018: 1115–1124. | 
																													
																							| 10 | BALARAMAN V, RAZNIEWSKI S, NUTT W. Recoin: relative completeness in wikidata. Proc. of the Web Conference, 2018: 1787–1792. | 
																													
																							| 11 | CAPPIELLO C, NOIA T D, MARCU B A, et al. A quality model for linked data exploration. Proc. of the International Conference on Web Engineering, 2016: 397–404. | 
																													
																							| 12 | WISESA A, DARARI F, KRISNADHI A, et al. Wikidata completeness profiling using proWD. Proc. of the 10th International Conference on Knowledge Capture, 2019: 123–130. | 
																													
																							| 13 | BARONCINI S, SARTINI B, VAN ERP M, et al Is dc: subject enough? A landscape on iconography and iconology statements of knowledge graphs in the semantic web. Journal of Documentation, 2023, 79 (7): 115- 136. | 
																													
																							| 14 | RAZNIEWSKI S, ARNAOUT H, GHOSH S, et al. Completeness, recall, and negation in open-world knowledge bases: a survey. ACM Computing Surveys, 2023, 56(6): 150. | 
																													
																							| 15 | PELLISSIER T T, STEPANOVA D, RAZNIEWSKI S, et al Completeness-aware rule learning from knowledge graphs. Proc. of the 16th International Semantic Web Conference, 2017, 507- 525. | 
																													
																							| 16 | GALARRAGA L, RAZNIEWSKI S, AMARILLI A, et al. Predicting completeness in knowledge bases. Proc. of the 10th ACM International Conference on Web Search and Data Mining, 2017: 375–383. | 
																													
																							| 17 | DARARI F, RAZNIEWSKI S, PRASOJO R, et al. Enabling fine-grained RDF data completeness assessment. Proc. of the International Conference on Web Engineering, 2016: 170–187. | 
																													
																							| 18 | LUGGEN M, DIFALLAH D, SARASUA C, et al. Non-parametric class completeness estimators for collaborative knowledge graphs — the case of wikidata. Proc. of the International Semantic Web Conference, 2019: 453–469. | 
																													
																							| 19 | CHERIX D, USBECK R, BOTH A, et al. CROCUS: clusterbased ontology data cleansing. Proc. of the CEUR Workshop, 2014: 7−14. | 
																													
																							| 20 | SOULET A, GIACOMETTI A, MARKHOFF B, et al. Representativeness of knowledge bases with the generalized Benford’s law. Proc. of the International Semantic Web Conference, 2018: 374–390. | 
																													
																							| 21 | SIMSEK U, KARLE E, ANGELE K, et al A knowledge graph perspective on knowledge engineering. SN Computer Science, 2022, 4 (1): 16. doi: 10.1007/s42979-022-01429-x
 | 
																													
																							| 22 | ABIAN D, MERONO-PENUELA A, SIMPERL E. An analysis of content gaps versus user needs in the wikidata knowledge graph. Proc. of the International Semantic Web Conference, 2022: 354–374. | 
																													
																							| 23 | SYCHEV O Combining neural networks and symbolic inference in a hybrid cognitive architecture. Procedia Computer Science, 2021, 190, 728- 734. doi: 10.1016/j.procs.2021.06.085
 | 
																													
																							| 24 | JI G L, LIU K, HE S Z, et al. Knowledge graph completion with adaptive sparse transfer matrix. Proc. of the AAAI Conference on Artificial Intelligence, 2016. DOI: https://doi.org/10.1609/aaai.030i1.10089. | 
																													
																							| 25 | AKINNUBI A, AJIBOYE J Knowledge graph: a survey. Journal of Robotics and Automation Research, 2023, 4 (2): 366- 377. | 
																													
																							| 26 | CHEN X J, JIA S B, XIANG Y A review: knowledge reasoning over knowledge graph. Expert Systems with Applications, 2020, 141 (112): 948. doi: 10.1016/j.eswa.2019.112948
 | 
																													
																							| 27 | PAN S R, LUO L H, WANG Y F, et al. Unifying large language models and knowledge graphs: a roadmap. IEEE Trans. on Knowledge and Data Engineering, 2024. DOI: 10.1109/TKDE.2024.3352100. | 
																													
																							| 28 | TIWARI S, Al-ASWADI F N, GAURAV D Recent trends in knowledge graphs: theory and practice. Soft Computing, 2021, 25 (31): 8337- 8355. doi: 10.1007/s00500-021-05756-8
 | 
																													
																							| 29 | CUI Y N, WANG Y X, SUN Z Q, et al Lifelong embedding learning and transfer for growing knowledge graphs. Proc. of the AAAI Conference on Artificial Intelligence, 2023, 37 (4): 4217- 4224. doi: 10.1609/aaai.v37i4.25539
 | 
																													
																							| 30 | TAMASAUSKAITE G, GROTH P Defining a knowledge graph development process through a systematic review. ACM Transactions on Software Engineering and Methodology, 2023, 32 (1): 1- 40. | 
																													
																							| 31 | CHEN Z, WANG Y H, ZHAO B, et al Knowledge graph completion: a review. IEEE Access, 2020, 8, 192435- 192456. doi: 10.1109/ACCESS.2020.3030076
 | 
																													
																							| 32 | WANG S, HUANG X, CHEN C, et al. Reform: error-aware few-shot knowledge graph completion. Proc. of the 30th ACM International Conference on Information & Knowledge Management, 2021: 1979−1988. | 
																													
																							| 33 | YOSHIDA M, ARASE Y, TSUNODA T, et al. Wikipedia page view reflects web search trend. Proc. of the ACM Web Science Conference, 2015: 65. |