
Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (1): 127-138.doi: 10.23919/JSEE.2024.000027
• SYSTEMS ENGINEERING • Previous Articles
					
													Ji MA1(
), Rui KANG1,2(
), Ruiying LI1,2,*(
), Qingyuan ZHANG2,3(
), Liang LIU4(
), Xuewang WANG4(
)
												  
						
						
						
					
				
Received:2022-10-21
															
							
															
							
															
							
																	Online:2025-02-18
															
							
																	Published:2025-03-18
															
						Contact:
								Ruiying LI   
																	E-mail:maji@buaa.edu.cn;kangrui@buaa.edu.cn;liruiying@buaa.edu.cn;zhangqingyuan@buaa.edu.cn;liuliang1945@buaa.edu.cn;wxw_air@126.com
																					About author:Supported by:Ji MA, Rui KANG, Ruiying LI, Qingyuan ZHANG, Liang LIU, Xuewang WANG. Delay bounded routing with the maximum belief degree for dynamic uncertain networks[J]. Journal of Systems Engineering and Electronics, 2025, 36(1): 127-138.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Parameters of the delay on edges"
| Edge | Delay/ms | 
Table 2
List of delay bounded paths"
| 0.01 | 7.02 | 8.02 | 3.02 | 10.02 | 11.02 | 1→2→4 | 17.04 | 
| 0.02 | 7.04 | 8.04 | 3.04 | 10.04 | 11.04 | 1→2→4 | 17.08 | 
| 0.75 | 10 | 10 | 5 | 14 | 13 | 1→3→4 | 23 | 
| 0.99 | 11.92 | 10.96 | 5.96 | 16.88 | 13.96 | 1→3→4 | 24.92 | 
Table 4
Parameters of the processing delay on nodes"
| Node type | Processing delay/ms | 
| User terminal | |
| Satellite | |
| Beijing Gateway | |
| Haikou Gateway | |
| Kashgar Gateway | |
| Jiamusi Gateway | 
Table 5
Link length between nodes at time ta km"
| Edge | Length | Edge | Length | Edge | Length | Edge | Length | Edge | Length | Edge | Length | |||||
| 7 678 | 6 374 | 7 678 | 4 618 | 7 678 | 3 570 | |||||||||||
| 7 678 | 6 374 | 7 678 | 4 618 | 7 678 | 3 570 | |||||||||||
| 7 678 | 6 438 | 7 678 | 4 166 | 7 678 | 3 987 | |||||||||||
| 7 678 | 6 438 | 7 678 | 4 166 | 7 678 | 3 987 | |||||||||||
| 7 678 | 6 411 | 7 678 | 3 732 | 7 678 | 4 463 | |||||||||||
| 7 678 | 6 411 | 7 678 | 3 732 | 7 678 | 4 463 | |||||||||||
| 7 678 | 6 294 | 7 678 | 4 454 | 7 678 | 4 883 | |||||||||||
| 7 678 | 6 294 | 7 678 | 4 454 | 7 678 | 4 883 | |||||||||||
| 7 678 | 6 090 | 7 678 | 3 079 | 7 678 | 5 302 | |||||||||||
| 7 678 | 6 090 | 7 678 | 3 079 | 7 678 | 5 302 | |||||||||||
| 7 678 | 5 809 | 7 678 | 2 955 | 7 678 | 5 675 | |||||||||||
| 7 678 | 5 809 | 7 678 | 2 955 | 7 678 | 5 675 | |||||||||||
| 7 678 | 5 459 | 7 678 | 3 009 | 7 678 | 5 986 | |||||||||||
| 7 678 | 5 459 | 7 678 | 3 009 | 7 678 | 5 986 | |||||||||||
| 7 678 | 7 255 | 7 678 | 4 818 | 7 678 | 6 022 | |||||||||||
| 7 678 | 7 255 | 7 678 | 4 818 | 7 678 | 6 022 | |||||||||||
| 3 438 | 2 198 | 3 184 | 3 603 | 3 425 | 2 356 | |||||||||||
| 2 137 | 2 632 | 1 698 | 
Table 7
Delay bounded path from the ${\boldsymbol{a}} $th to the (${\boldsymbol{a}} $+4)th time slice"
| Time slice | Delay bounded path p* | Belief degree | 
| 0→2→3→9→15→51→53 | ||
| 0→8→9→15→51→53 | 1 | |
| 0→29→28→27→ 21→52→53  | ||
| 0→34→33→32→52→53 | 1 | |
| 0→34→33→39→ 45→51→53  | 
| 1 |  
											ZHU X M, JIANG C X Creating efficient integrated satellite-terrestrial networks in the 6G era. IEEE Wireless Communications, 2022, 29 (4): 154- 160. 
																							 doi: 10.1109/MWC.011.2100643  | 
										
| 2 |  
											KAMRUZZAMAN M, SARKAR N I, GUTIERREZ J A dynamic algorithm for interference management in D2D-enabled heterogeneous cellular networks: modeling and analysis. Sensors, 2022, 22 (3): 1063. 
																							 doi: 10.3390/s22031063  | 
										
| 3 | VATAMBETI R, SANSHI S, KRISHNA D P An efficient clustering approach for optimized path selection and route maintenance in mobile ad hoc networks. Journal of Ambient Intelligence and Humanized Computing, 2021, 14 (1): 305- 309. | 
| 4 |  
											CHEN Y J, LIAO K M, CHEN Y F End-to-end delay analysis in aerial-terrestrial heterogeneous networks. IEEE Trans. on Vehicular Technology, 2021, 70 (2): 1793- 1806. 
																							 doi: 10.1109/TVT.2021.3052250  | 
										
| 5 |  
											WERNER M A dynamic routing concept for ATM-based satellite personal communication networks. IEEE Journal on Selected Areas in Communications, 1997, 15 (8): 1636- 1648. 
																							 doi: 10.1109/49.634801  | 
										
| 6 | XU M M, ZHANG G X, LIANG X P, et al Energy-efficient data transmission in mobility-aware wireless networks. Wireless Communications and Mobile Computing, 2022, 2022, 8683854. | 
| 7 |  
											EKICI E, AKYILDIZ I F, BENDER M D A distributed routing algorithm for datagram traffic in LEO satellite networks. IEEE/ACM Trans. on Networking, 2001, 9 (2): 137- 147. 
																							 doi: 10.1109/90.917071  | 
										
| 8 |  
											HU M L, YANG R H, HU Y, et al QoS-aware software defined multicast in LEO satellite networks. IEEE Trans. on Aerospace and Electronic Systems, 2022, 58 (6): 5307- 5317. 
																							 doi: 10.1109/TAES.2022.3169732  | 
										
| 9 |  
											GUO Z, YAN Z A weighted semi-distributed routing algorithm for LEO satellite networks. Journal of Network and Computer Applications, 2015, 58, 1- 11. 
																							 doi: 10.1016/j.jnca.2015.08.015  | 
										
| 10 |  
											WANG P, CHEN B C, GU X M, et al Multi-constraint quality of service routing algorithm for dynamic topology networks. Journal of Systems Engineering and Electronics, 2008, 19 (1): 58- 64. 
																							 doi: 10.1016/S1004-4132(08)60046-8  | 
										
| 11 |  
											SHI Z, ZHU J, WEI H N SARSA-based delay-aware route selection for SDN-enabled wireless-PLC power distribution IoT. Alexandria Engineering Journal, 2022, 61 (8): 5795- 5803. 
																							 doi: 10.1016/j.aej.2021.11.029  | 
										
| 12 |  
											GENG S Y, LIU S F, FANG Z G, et al An optimal delay routing algorithm considering delay variation in the LEO satellite communication network. Computer Networks, 2020, 173, 107166. 
																							 doi: 10.1016/j.comnet.2020.107166  | 
										
| 13 |  
											JONES E P C, LI L, SCHMIDTKE J K, et al Practical routing in delay-tolerant networks. IEEE Trans. on Mobile Computing, 2007, 6 (8): 943- 959. 
																							 doi: 10.1109/TMC.2007.1016  | 
										
| 14 | ZHANG C W, HEI X J, LIU W, et al. On improving dynamic stochastic routing algorithms in overlay networks. Proc. of the IEEE International Conference on Networks, 2012: 447−452. | 
| 15 |  
											SIDERA A, TOUMPIS S Wireless mobile DTN routing with the extended minimum estimated expected delay protocol. Ad Hoc Networks, 2016, 42, 47- 60. 
																							 doi: 10.1016/j.adhoc.2016.01.006  | 
										
| 16 | BHUVANESWARI M, PARAMASIVAN B, KANDASAMY A Stochastic dynamic programming model for optimal resource allocation in vehicular ad hoc networks. Sadhana, 2018, 43 (4): 1- 8. | 
| 17 |  
											BORAH S J, DHURANDHER S K, WOUNGANG I, et al A multi-objectives based technique for optimized routing in opportunistic networks. Journal of Ambient Intelligence and Humanized Computing, 2018, 9 (3): 655- 666. 
																							 doi: 10.1007/s12652-017-0462-z  | 
										
| 18 | JUNG Y, JO H, CHOO J, et al Statistical model calibration and design optimization under aleatory and epistemic uncertainty. Reliability Engineering & System Safety, 2022, 222, 108428. | 
| 19 |  
											MA J, KANG R, LI R Y, et al Uncertainty theory-based resilience analysis for LEO satellite communication systems. Symmetry, 2022, 14 (8): 1568. 
																							 doi: 10.3390/sym14081568  | 
										
| 20 | ZENG Y N, DUAN R X, FENG T, et al. A fault diagnostic system based on Petri nets and gray relational analysis for train-ground wireless communication systems. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2021, 235(6): 1102−1117. | 
| 21 | LIU B D. Uncertainty theory. Berlin: Springer-Verlag, 2007. | 
| 22 | LIU B D. Uncertainty theory: a branch of mathematics for modeling human uncertainty. Berlin: Springer-Verlag, 2010. | 
| 23 |  
											GAO Y Shortest path problem with uncertain arc lengths. Computers and Mathematics with Applications, 2011, 62 (6): 2591- 2600. 
																							 doi: 10.1016/j.camwa.2011.07.058  | 
										
| 24 |  
											HAN S W, PENG Z X, WANG S Q The maximum flow problem of uncertain network. Information Sciences, 2014, 265, 167- 175. 
																							 doi: 10.1016/j.ins.2013.11.029  | 
										
| 25 | ZURAWSKI R. The industrial communication technology handbook. Florida: CRC Press, 2005. | 
| 26 |  
											LI R Y, LI M N, LIAO H T, et al An efficient method for evaluating the end-to-end transmission time reliability of a switched Ethernet. Journal of Network and Computer Applications, 2017, 88, 124- 133. 
																							 doi: 10.1016/j.jnca.2017.01.038  | 
										
| 27 |  
											PAPAGIANNAKI K Long-term forecasting of internet backbone traffic. IEEE Trans. on Neural Networks, 2005, 16 (5): 1110- 1124. 
																							 doi: 10.1109/TNN.2005.853437  | 
										
| 28 | MINH Q T, KOTO H, KITAHARA T, et al. Separation of background and foreground traffic based on periodicity analysis. Proc. of IEEE Global Communications Conference, 2015. DOI: 10.1109/GLOCOM.2015.7417076. | 
| 29 |  
											LU Y, SUN F C, ZHAO Y J Virtual topology for LEO satellite networks based on earth-fixed footprint mode. IEEE Communications Letters, 2013, 17 (2): 357- 360. 
																							 doi: 10.1109/LCOMM.2013.011113.122635  | 
										
| 30 | IPPOLITO L J. Satellite communications systems engineering. New York: John WILEY & Sons, 2017. | 
| 31 |  
											ZHANG S J, WANG P, WAN Y, et al V/Ka-band LEO high-throughput satellite and integrated satellite-terrestrial network experiment system: first two years flight results. Acta Astronautica, 2022, 201, 533- 553. 
																							 doi: 10.1016/j.actaastro.2022.09.028  | 
										
| 32 |  
											CRUZ-SANCHEZ H, FRANCK L, BEYLOT A L Routing metrics for store and forward satellite constellations. IET Communications, 2010, 4 (13): 1563- 1572. 
																							 doi: 10.1049/iet-com.2009.0460  | 
										
| 33 |  
											ZU T P, KANG R, WEN M L Graduation formula: a new method to construct belief reliability distribution under epistemic uncertainty. Journal of Systems Engineering and Electronics, 2020, 31 (3): 626- 633. 
																							 doi: 10.23919/JSEE.2020.000038  | 
										
| 34 | FLANNIGAN L, YOELL L, XU C. Mid-wave and long-wave infrared transmitters and detectors for optical satellite communications-a review. Journal of Optics, 2022, 24(4): 043002. | 
| [1] | Tianpei ZU, Rui KANG, Meilin WEN. Graduation formula: a new method to construct belief reliability distribution under epistemic uncertainty [J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 626-633. | 
| [2] | Xiangfei MENG, Ying WANG, Chao LI, Xiaoyang WANG, Maolong LYU. Approach for uncertain multi-objective programming problems with correlated objective functions under CEV criterion [J]. Journal of Systems Engineering and Electronics, 2018, 29(6): 1197-1208. | 
| [3] | Yang WANG, Shanshan FU, Bing WU, Jinhui HUANG, Xiaoyang WEI. Towards optimal recovery scheduling for dynamic resilience of networked infrastructure [J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 995-1008. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||