Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (2): 353-361.doi: 10.23919/JSEE.2024.000099
• ELECTRONICS TECHNOLOGY • Previous Articles
Hangui ZHU1(), Xixi CHEN2(
), Teng MA3(
), Yongliang WANG1,4,*(
)
Received:
2023-08-30
Accepted:
2024-07-01
Online:
2025-04-18
Published:
2025-05-20
Contact:
Yongliang WANG
E-mail:zhg598@hotmail.com;xixichen99@163.com;tma1996@126.com;ylwangkjld@163.com
About author:
Supported by:
Hangui ZHU, Xixi CHEN, Teng MA, Yongliang WANG. Deep unfolded amplitude-phase error self-calibration network for DOA estimation[J]. Journal of Systems Engineering and Electronics, 2025, 36(2): 353-361.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | YAN F G, SHEN Y, LIU S, et al Overview of efficient algorithms for super-resolution DOA estimates. Systems Engineering and Electronics, 2015, 37 (7): 1465- 1475. |
2 |
LIU D P, ZHAO Y B, ZHANG T X Sparsity-based two-dimensional DOA estimation for co-prime planar array via enhanced matrix completion. Remote Sensing, 2022, 14 (19): 4690.
doi: 10.3390/rs14194690 |
3 | LAU K H, NG C K, SONG J Low-complex single-snapshot DOA-estimation with higher degree of atomic separation-freedom in a MU-MIMO system aided by prior information. IEEE Signal Processing Letters, 2023, 30, 349- 353. |
4 |
TANG W G, JIANG H, ZHANG Q, et al PSWF-based decoupled atomic norm minimization for DOD and DOA estimation in MIMO radar with arbitrary linear arrays. Signal Processing, 2023, 212, 109136.
doi: 10.1016/j.sigpro.2023.109136 |
5 | ZHU H G, FENG W K, FENG C Q, et al Deep unfolded gridless DOA estimation networks based on atomic norm minimization. Remote Sensing, 2023, 15 (1): 13. |
6 |
HE J, SHU T, LI L N, et al Mixed near-field and far-field localization and array calibration with partly calibrated arrays. IEEE Trans. on Signal Processing, 2022, 70, 2105- 2118.
doi: 10.1109/TSP.2022.3168975 |
7 | RAMAMOHAN K N, CHEPURI S P, COMESANA D F, et al Self-calibration of acoustic scalar and vector sensor arrays. IEEE Trans. on Signal Processing, 2022, 71, 61- 75. |
8 |
PAN C, BA X R, TANG Y H, et al Phased array antenna calibration method experimental validation and comparison. Electronics, 2023, 12 (3): 489.
doi: 10.3390/electronics12030489 |
9 |
LI J F, ZHANG Q T, DENG W M, et al Source direction finding and direct localization exploiting UAV array with unknown gain-phase errors. IEEE Internet of Things Journal, 2022, 9 (21): 21561- 21569.
doi: 10.1109/JIOT.2022.3181450 |
10 | QI C, WANG Y Y, ZHANG Y G, et al DOA estimation and self-calibration algorithm for uniform circular array. Electronics Papers, 2005, 41 (20): 1092- 1094. |
11 |
GUO Y D, HU X W, FENG W K, et al Low-complexity 2D DOA estimation and self-calibration for uniform rectangle array with gain-phase error. Remote Sensing, 2022, 14 (13): 3064.
doi: 10.3390/rs14133064 |
12 | YANG P, HONG B, ZHOU W Theory and experiment of array calibration via real steering vector for high-precision DOA estimation. IEEE Antennas and Wireless Propagation Papers, 2022, 21 (8): 1678- 1682. |
13 | WANG K, YI J X, CHENG F, et al Array errors and antenna element patterns calibration based on uniform circular array. IEEE Antennas and Wireless Propagation Papers, 2021, 20 (6): 1063- 1067. |
14 | STEPHAN M, WANG K, REISSLAND T, et al. Evaluation of antenna calibration and DOA estimation algorithms for FMCW radars. Proc. of the 49th European Microwave Conference, 2019: 944−947. |
15 | LIU S Y, ZHANG Z, GUO Y 2-D DOA estimation with imperfect L-shaped array using active calibration. IEEE Communications Papers, 2020, 25 (4): 1178- 1182. |
16 | SHI W J, ZHU L D, ZHANG Y G G, et al. A DOA estimation method with high resolution in the presence of satellite array error. Proc. of the International Symposium on Networks, Computers and Communications, 2023. DOI: 10.1109/ISNCC58260.2023.10323867. |
17 | LIU J, ZHOU W D, HUANG D F, et al Covariance matrix based fast smoothed sparse DOA estimation with partly calibrated array. AEU-International Journal of Electronics and Communications, 2018, 84, 8- 12. |
18 | GREGOR K, LECUN Y. Learning fast approximations of sparse coding. Proc. of the 27th International Conference on International Conference on Machine Learning, 2010: 399−406. |
19 | ZHANG J, GHANEM B. ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 1828−1837. |
20 |
YANG C Z, GU Y T, CHEN B D, et al Learning proximal operator methods for nonconvex sparse recovery with theoretical guarantee. IEEE Trans. on Signal Processing, 2020, 68, 5244- 5259.
doi: 10.1109/TSP.2020.2978615 |
21 |
XIAO P, LIAO B, DELIGIANNIS N DeepFPC: a deep unfolded network for sparse signal recovery from 1-bit measurements with application to doa estimation. Signal Processing, 2020, 176, 107699.
doi: 10.1016/j.sigpro.2020.107699 |
22 |
SU X L, HU P H, LIU Z, et al Deep alternating projection networks for gridless DOA estimation with nested array. IEEE Signal Processing Letters, 2022, 29, 1589- 1593.
doi: 10.1109/LSP.2022.3188446 |
23 |
GUO Y Z, JIN J, WANG Q, et al Position-enabled complex toeplitz LISTA for DOA estimation with unknow mutual coupling. Signal Processing, 2022, 194, 108422.
doi: 10.1016/j.sigpro.2021.108422 |
24 | YOUN J, RAVINDRAN S, WU R, et al. Circular convolutional learned ISTA for automotive radar DOA estimation. Proc. of the 19th European Radar Conference, 2022: 273−276. |
25 | TANG H Y, ZHANG Y C, LUO J W, et al. Sparse DOA estimation based on a deep unfolded network for MIMO radar. Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2023: 5547−5550. |
26 |
TROPP J A, GILBERT A C Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. on Information Theory, 2007, 53 (12): 4655- 4666.
doi: 10.1109/TIT.2007.909108 |
27 |
LIU F L, PENG L, WEI M G, et al An improved L1-SVD algorithm based on noise subspace for DOA estimation. Progress in Electromagnetics Research C, 2012, 29, 109- 122.
doi: 10.2528/PIERC12021203 |
28 |
CAO Z, ZHOU L, DAI J S Sparse Bayesian approach for DOD and DOA estimation with bistatic MIMO radar. IEEE Access, 2019, 7, 155335- 155346.
doi: 10.1109/ACCESS.2019.2949152 |
29 |
LIU H, ZHAO L M, LI Y, et al A sparse-based approach for DOA estimation and array calibration in uniform linear array. IEEE Sensors Journal, 2016, 16 (15): 6018- 6027.
doi: 10.1109/JSEN.2016.2577712 |
30 | BOYD S, PARIKH N, CHU E. Distributed optimization and statistical learning via the alternating direction method of multipliers. Boston: Now Publishers Inc, 2011. |
[1] | Zeqi YANG, Yiheng LIU, Hua ZHANG, Shuai MA, Kai CHANG, Ning LIU, Xiaode LYU. DOA estimation of high-dimensional signals based on Krylov subspace and weighted l1-norm [J]. Journal of Systems Engineering and Electronics, 2024, 35(3): 532-540. |
[2] | Shuang WU, Ye YUAN, Weike ZHANG, Naichang YUAN. Super-resolution DOA estimation for correlated off-grid signals via deep estimator [J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1096-1107. |
[3] | Luo CHEN, Xiangrui DAI, Xiaofei ZHANG. Joint angle and frequency estimation for linear array: an extended DOA-matrix method [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 887-895. |
[4] | Shenghua WANG, Yunhe CAO, Yutao LIU. A method of Robust low-angle target height and compound reflection coefficient joint estimation [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 322-329. |
[5] | Ping LI, Jianfeng LI, Gaofeng ZHAO. Low complexity DOA estimation for massive UCA with single snapshot [J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 22-27. |
[6] | Junpeng SHI, Fangqing WEN, Yongxiang LIU, Tianpeng LIU, Zhen LIU. High-order extended coprime array design for direction of arrival estimation [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 748-755. |
[7] | Shuai SHAO, Aijun LIU, Changjun YU, Quanrui ZHAO. Polarization quaternion DOA estimation based on vector MISC array [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 764-778. |
[8] | Yanan DU, Hongyuan GAO, Menghan CHEN. Direction of arrival estimation method based on quantum electromagnetic field optimization in the impulse noise [J]. Journal of Systems Engineering and Electronics, 2021, 32(3): 527-537. |
[9] | Xiaojiao PANG, Yongbo ZHAO, Chenghu CAO, Baoqing XU, Yili HU. STAP method based on atomic norm minimization with array amplitude-phase error calibration [J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 21-30. |
[10] | Chenghu CAO, Yongbo ZHAO, Xiaojiao PANG, Baoqing XU, Sheng CHEN. A method based on Chinese remainder theorem with all phase DFT for DOA estimation in sparse array [J]. Journal of Systems Engineering and Electronics, 2020, 31(1): 1-11. |
[11] | Kunlai XIONG, Zhangmeng LIU, Pei WANG. SAGE-based algorithm for DOA estimation and array calibration in the presence of sensor location errors [J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1074-1080. |
[12] | Shuzhen WANG, Yang FANG, Jin'gang ZHANG, Mingshi LUO, Qing LI. Near-field 3D imaging approach combining MJSR and FGG-NUFFT [J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1096-1109. |
[13] | Long XIANG, Shaodong LI, Jun YANG, Wenfeng CHEN, Hu XIANG. A fast decoupled ISAR high-resolution imaging method using structural sparse information under low SNR [J]. Journal of Systems Engineering and Electronics, 2019, 30(3): 492-503. |
[14] | Shun He, Zhiwei Yang, and Guisheng Liao. DOA estimation of wideband signals based on iterative spectral reconstruction [J]. Journal of Systems Engineering and Electronics, 2017, 28(6): 1039-1045. |
[15] | Jiaqi Zhen and Yong Liu. DOA estimation for mixed signals with gain-phase [J]. Journal of Systems Engineering and Electronics, 2017, 28(6): 1046-1056. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||