Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (1): 127-138.doi: 10.23919/JSEE.2024.000027
• SYSTEMS ENGINEERING • Previous Articles
Ji MA1(), Rui KANG1,2(
), Ruiying LI1,2,*(
), Qingyuan ZHANG2,3(
), Liang LIU4(
), Xuewang WANG4(
)
Received:
2022-10-21
Online:
2025-02-18
Published:
2025-03-18
Contact:
Ruiying LI
E-mail:maji@buaa.edu.cn;kangrui@buaa.edu.cn;liruiying@buaa.edu.cn;zhangqingyuan@buaa.edu.cn;liuliang1945@buaa.edu.cn;wxw_air@126.com
About author:
Supported by:
Ji MA, Rui KANG, Ruiying LI, Qingyuan ZHANG, Liang LIU, Xuewang WANG. Delay bounded routing with the maximum belief degree for dynamic uncertain networks[J]. Journal of Systems Engineering and Electronics, 2025, 36(1): 127-138.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Parameters of the delay on edges"
Edge | Delay/ms |
Table 2
List of delay bounded paths"
0.01 | 7.02 | 8.02 | 3.02 | 10.02 | 11.02 | 1→2→4 | 17.04 |
0.02 | 7.04 | 8.04 | 3.04 | 10.04 | 11.04 | 1→2→4 | 17.08 |
0.75 | 10 | 10 | 5 | 14 | 13 | 1→3→4 | 23 |
0.99 | 11.92 | 10.96 | 5.96 | 16.88 | 13.96 | 1→3→4 | 24.92 |
Table 4
Parameters of the processing delay on nodes"
Node type | Processing delay/ms |
User terminal | |
Satellite | |
Beijing Gateway | |
Haikou Gateway | |
Kashgar Gateway | |
Jiamusi Gateway |
Table 5
Link length between nodes at time ta km"
Edge | Length | Edge | Length | Edge | Length | Edge | Length | Edge | Length | Edge | Length | |||||
7 678 | 6 374 | 7 678 | 4 618 | 7 678 | 3 570 | |||||||||||
7 678 | 6 374 | 7 678 | 4 618 | 7 678 | 3 570 | |||||||||||
7 678 | 6 438 | 7 678 | 4 166 | 7 678 | 3 987 | |||||||||||
7 678 | 6 438 | 7 678 | 4 166 | 7 678 | 3 987 | |||||||||||
7 678 | 6 411 | 7 678 | 3 732 | 7 678 | 4 463 | |||||||||||
7 678 | 6 411 | 7 678 | 3 732 | 7 678 | 4 463 | |||||||||||
7 678 | 6 294 | 7 678 | 4 454 | 7 678 | 4 883 | |||||||||||
7 678 | 6 294 | 7 678 | 4 454 | 7 678 | 4 883 | |||||||||||
7 678 | 6 090 | 7 678 | 3 079 | 7 678 | 5 302 | |||||||||||
7 678 | 6 090 | 7 678 | 3 079 | 7 678 | 5 302 | |||||||||||
7 678 | 5 809 | 7 678 | 2 955 | 7 678 | 5 675 | |||||||||||
7 678 | 5 809 | 7 678 | 2 955 | 7 678 | 5 675 | |||||||||||
7 678 | 5 459 | 7 678 | 3 009 | 7 678 | 5 986 | |||||||||||
7 678 | 5 459 | 7 678 | 3 009 | 7 678 | 5 986 | |||||||||||
7 678 | 7 255 | 7 678 | 4 818 | 7 678 | 6 022 | |||||||||||
7 678 | 7 255 | 7 678 | 4 818 | 7 678 | 6 022 | |||||||||||
3 438 | 2 198 | 3 184 | 3 603 | 3 425 | 2 356 | |||||||||||
2 137 | 2 632 | 1 698 |
Table 7
Delay bounded path from the ${\boldsymbol{a}} $th to the (${\boldsymbol{a}} $+4)th time slice"
Time slice | Delay bounded path p* | Belief degree |
0→2→3→9→15→51→53 | ||
0→8→9→15→51→53 | 1 | |
0→29→28→27→ 21→52→53 | ||
0→34→33→32→52→53 | 1 | |
0→34→33→39→ 45→51→53 |
1 |
ZHU X M, JIANG C X Creating efficient integrated satellite-terrestrial networks in the 6G era. IEEE Wireless Communications, 2022, 29 (4): 154- 160.
doi: 10.1109/MWC.011.2100643 |
2 |
KAMRUZZAMAN M, SARKAR N I, GUTIERREZ J A dynamic algorithm for interference management in D2D-enabled heterogeneous cellular networks: modeling and analysis. Sensors, 2022, 22 (3): 1063.
doi: 10.3390/s22031063 |
3 | VATAMBETI R, SANSHI S, KRISHNA D P An efficient clustering approach for optimized path selection and route maintenance in mobile ad hoc networks. Journal of Ambient Intelligence and Humanized Computing, 2021, 14 (1): 305- 309. |
4 |
CHEN Y J, LIAO K M, CHEN Y F End-to-end delay analysis in aerial-terrestrial heterogeneous networks. IEEE Trans. on Vehicular Technology, 2021, 70 (2): 1793- 1806.
doi: 10.1109/TVT.2021.3052250 |
5 |
WERNER M A dynamic routing concept for ATM-based satellite personal communication networks. IEEE Journal on Selected Areas in Communications, 1997, 15 (8): 1636- 1648.
doi: 10.1109/49.634801 |
6 | XU M M, ZHANG G X, LIANG X P, et al Energy-efficient data transmission in mobility-aware wireless networks. Wireless Communications and Mobile Computing, 2022, 2022, 8683854. |
7 |
EKICI E, AKYILDIZ I F, BENDER M D A distributed routing algorithm for datagram traffic in LEO satellite networks. IEEE/ACM Trans. on Networking, 2001, 9 (2): 137- 147.
doi: 10.1109/90.917071 |
8 |
HU M L, YANG R H, HU Y, et al QoS-aware software defined multicast in LEO satellite networks. IEEE Trans. on Aerospace and Electronic Systems, 2022, 58 (6): 5307- 5317.
doi: 10.1109/TAES.2022.3169732 |
9 |
GUO Z, YAN Z A weighted semi-distributed routing algorithm for LEO satellite networks. Journal of Network and Computer Applications, 2015, 58, 1- 11.
doi: 10.1016/j.jnca.2015.08.015 |
10 |
WANG P, CHEN B C, GU X M, et al Multi-constraint quality of service routing algorithm for dynamic topology networks. Journal of Systems Engineering and Electronics, 2008, 19 (1): 58- 64.
doi: 10.1016/S1004-4132(08)60046-8 |
11 |
SHI Z, ZHU J, WEI H N SARSA-based delay-aware route selection for SDN-enabled wireless-PLC power distribution IoT. Alexandria Engineering Journal, 2022, 61 (8): 5795- 5803.
doi: 10.1016/j.aej.2021.11.029 |
12 |
GENG S Y, LIU S F, FANG Z G, et al An optimal delay routing algorithm considering delay variation in the LEO satellite communication network. Computer Networks, 2020, 173, 107166.
doi: 10.1016/j.comnet.2020.107166 |
13 |
JONES E P C, LI L, SCHMIDTKE J K, et al Practical routing in delay-tolerant networks. IEEE Trans. on Mobile Computing, 2007, 6 (8): 943- 959.
doi: 10.1109/TMC.2007.1016 |
14 | ZHANG C W, HEI X J, LIU W, et al. On improving dynamic stochastic routing algorithms in overlay networks. Proc. of the IEEE International Conference on Networks, 2012: 447−452. |
15 |
SIDERA A, TOUMPIS S Wireless mobile DTN routing with the extended minimum estimated expected delay protocol. Ad Hoc Networks, 2016, 42, 47- 60.
doi: 10.1016/j.adhoc.2016.01.006 |
16 | BHUVANESWARI M, PARAMASIVAN B, KANDASAMY A Stochastic dynamic programming model for optimal resource allocation in vehicular ad hoc networks. Sadhana, 2018, 43 (4): 1- 8. |
17 |
BORAH S J, DHURANDHER S K, WOUNGANG I, et al A multi-objectives based technique for optimized routing in opportunistic networks. Journal of Ambient Intelligence and Humanized Computing, 2018, 9 (3): 655- 666.
doi: 10.1007/s12652-017-0462-z |
18 | JUNG Y, JO H, CHOO J, et al Statistical model calibration and design optimization under aleatory and epistemic uncertainty. Reliability Engineering & System Safety, 2022, 222, 108428. |
19 |
MA J, KANG R, LI R Y, et al Uncertainty theory-based resilience analysis for LEO satellite communication systems. Symmetry, 2022, 14 (8): 1568.
doi: 10.3390/sym14081568 |
20 | ZENG Y N, DUAN R X, FENG T, et al. A fault diagnostic system based on Petri nets and gray relational analysis for train-ground wireless communication systems. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2021, 235(6): 1102−1117. |
21 | LIU B D. Uncertainty theory. Berlin: Springer-Verlag, 2007. |
22 | LIU B D. Uncertainty theory: a branch of mathematics for modeling human uncertainty. Berlin: Springer-Verlag, 2010. |
23 |
GAO Y Shortest path problem with uncertain arc lengths. Computers and Mathematics with Applications, 2011, 62 (6): 2591- 2600.
doi: 10.1016/j.camwa.2011.07.058 |
24 |
HAN S W, PENG Z X, WANG S Q The maximum flow problem of uncertain network. Information Sciences, 2014, 265, 167- 175.
doi: 10.1016/j.ins.2013.11.029 |
25 | ZURAWSKI R. The industrial communication technology handbook. Florida: CRC Press, 2005. |
26 |
LI R Y, LI M N, LIAO H T, et al An efficient method for evaluating the end-to-end transmission time reliability of a switched Ethernet. Journal of Network and Computer Applications, 2017, 88, 124- 133.
doi: 10.1016/j.jnca.2017.01.038 |
27 |
PAPAGIANNAKI K Long-term forecasting of internet backbone traffic. IEEE Trans. on Neural Networks, 2005, 16 (5): 1110- 1124.
doi: 10.1109/TNN.2005.853437 |
28 | MINH Q T, KOTO H, KITAHARA T, et al. Separation of background and foreground traffic based on periodicity analysis. Proc. of IEEE Global Communications Conference, 2015. DOI: 10.1109/GLOCOM.2015.7417076. |
29 |
LU Y, SUN F C, ZHAO Y J Virtual topology for LEO satellite networks based on earth-fixed footprint mode. IEEE Communications Letters, 2013, 17 (2): 357- 360.
doi: 10.1109/LCOMM.2013.011113.122635 |
30 | IPPOLITO L J. Satellite communications systems engineering. New York: John WILEY & Sons, 2017. |
31 |
ZHANG S J, WANG P, WAN Y, et al V/Ka-band LEO high-throughput satellite and integrated satellite-terrestrial network experiment system: first two years flight results. Acta Astronautica, 2022, 201, 533- 553.
doi: 10.1016/j.actaastro.2022.09.028 |
32 |
CRUZ-SANCHEZ H, FRANCK L, BEYLOT A L Routing metrics for store and forward satellite constellations. IET Communications, 2010, 4 (13): 1563- 1572.
doi: 10.1049/iet-com.2009.0460 |
33 |
ZU T P, KANG R, WEN M L Graduation formula: a new method to construct belief reliability distribution under epistemic uncertainty. Journal of Systems Engineering and Electronics, 2020, 31 (3): 626- 633.
doi: 10.23919/JSEE.2020.000038 |
34 | FLANNIGAN L, YOELL L, XU C. Mid-wave and long-wave infrared transmitters and detectors for optical satellite communications-a review. Journal of Optics, 2022, 24(4): 043002. |
[1] | Tianpei ZU, Rui KANG, Meilin WEN. Graduation formula: a new method to construct belief reliability distribution under epistemic uncertainty [J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 626-633. |
[2] | Xiangfei MENG, Ying WANG, Chao LI, Xiaoyang WANG, Maolong LYU. Approach for uncertain multi-objective programming problems with correlated objective functions under CEV criterion [J]. Journal of Systems Engineering and Electronics, 2018, 29(6): 1197-1208. |
[3] | Yang WANG, Shanshan FU, Bing WU, Jinhui HUANG, Xiaoyang WEI. Towards optimal recovery scheduling for dynamic resilience of networked infrastructure [J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 995-1008. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||