Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (2): 552-568.doi: 10.23919/JSEE.2025.000025
• CONTROL THEORY AND APPLICATION • Previous Articles
Hao YANG(), Shifeng ZHANG(
), Xibin BAI(
), Chengye YANG(
)
Received:
2023-05-25
Online:
2025-04-18
Published:
2025-05-20
Contact:
Shifeng ZHANG
E-mail:yanghao16@nudt.edu.cn;zhangshifeng@nudt.edu.cn;xibinbai@nudt.edu.cn;yangchengye22@nudt.edu.cn
About author:
Supported by:
Hao YANG, Shifeng ZHANG, Xibin BAI, Chengye YANG. Impact time control guidance for moving-target considering velocity variation and field-of-view constraint[J]. Journal of Systems Engineering and Electronics, 2025, 36(2): 552-568.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 3
Simulation results at different target velocities"
( | |||||
−20 | 18.00 | 18.27 | 0.27 | 1.5 | 0.021 |
−15 | 18.65 | 18.95 | 0.30 | 1.6 | 0.083 |
−10 | 19.36 | 19.71 | 0.35 | 1.8 | 0.011 |
−5 | 20.16 | 20.56 | 0.39 | 2.0 | 0.032 |
0 | 21.05 | 21.52 | 0.46 | 2.2 | 9×10−6 |
5 | 22.06 | 22.61 | 0.55 | 2.5 | 0.011 |
10 | 23.23 | 23.88 | 0.65 | 2.8 | 0.037 |
15 | 24.57 | 25.38 | 0.81 | 3.3 | 0.035 |
20 | 26.15 | 27.18 | 1.03 | 3.9 | 0.016 |
Table 7
The disturbance parameters and its ranges"
Number | Deflection parameter | Error distribution form | Deflection range (3 |
1 | Mass M | Normal distribution | [−5%,5%] |
2 | Atmosphere density | Normal distribution | [−5%,5%] |
3 | Initial velocity | Normal distribution | [−10%,10%] |
4 | Initial velocity flight path angle | Normal distribution | [−5°,5°] |
5 | Axial aerodynamic | Normal distribution | [−10%,10%] |
6 | Normal aerodynamic | Normal distribution | [−10%,10%] |
1 | FOSSIER M W The development of radar homing missiles. Journal of Guidance Control and Dynamics, 2015, 7 (6): 641- 651. |
2 |
HOU L B, LUO H W, SHI H, et al An optimal geometrical guidance law for impact time and angle control. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (6): 9821- 9830.
doi: 10.1109/TAES.2023.3305974 |
3 |
ZHOU J P, ZHANG W J, ZHOU H, et al Design of integral sliding mode guidance law based on disturbance observer. Journal of Systems Engineering and Electronics, 2024, 35 (1): 186- 194.
doi: 10.23919/JSEE.2023.000111 |
4 |
ABHINAV S, CAO Y C Nonlinear guidance law for target enclosing with arbitrary smooth shapes. Journal of Guidance Control and Dynamics, 2022, 45 (11): 2182- 2192.
doi: 10.2514/1.G006957 |
5 |
HUANG J, CHANG S J, CHEN S F A hybrid proportional navigation based two-stage impact time control guidance law. Journal of Systems Engineering and Electronics, 2022, 33 (2): 461- 473.
doi: 10.23919/JSEE.2022.000046 |
6 |
NANAVATIA R V, KUMARB S R Impact angle-based engagement classification and nonlinear guidance against targets with a speed advantage. Aerospace Science and Technology, 2022, 129, 107856.
doi: 10.1016/j.ast.2022.107856 |
7 |
BIN Y R, WANG H, LIN D F, et al Impact time control guidance against maneuvering targets based on a nonlinear virtual relative model. Chinese Journal of Aeronautics, 2023, 36 (7): 444- 459.
doi: 10.1016/j.cja.2023.03.014 |
8 |
YOU H, CHANG X L, ZHAO J F, et al Three-dimensional impact-angle-constrained fixed-time cooperative guidance algorithm with adjustable impact time. Aerospace Science and Technology, 2023, 141, 108574.
doi: 10.1016/j.ast.2023.108574 |
9 |
WANG C Y, WANG W L, DONG W, et al Multiple-stage spatial-temporal cooperative guidance without time-to-go estimation. Chinese Journal of Aeronautics, 2024, 37 (9): 399- 416.
doi: 10.1016/j.cja.2024.05.026 |
10 |
YU J L, SHI Z X, DONG X W, et al Impact time consensus cooperative guidance against the maneuvering target: theory and experiment. IEEE Trans. on Aerospace and Electronic, 2023, 59 (4): 4590- 4603.
doi: 10.1109/TAES.2023.3243154 |
11 |
HE S M, LEE C H, SHIN H S Optimal three-dimensional impact time guidance with seeker’s field-of-view constraint. Chinese Journal of Aeronautics, 2021, 34 (2): 240- 251.
doi: 10.1016/j.cja.2020.04.006 |
12 | RAZIYE T, KORAY S E, FLORIAN H. Impact time control methods based on time dependent shaping of the fundamental states. American Institute of Aeronautics and Astronautics Scitech Forum, 2019. DOI:10.2514/6.2019-1925. |
13 |
SINHA A, KUMAR S R, MUKHERJEE D Impact time constrained integrated guidance and control design. Aerospace Science and Technology, 2021, 115, 106824.
doi: 10.1016/j.ast.2021.106824 |
14 | ZHANG Y, WANG X L, MA G X. Impact time control guidance law with large impact angle constraint. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 2015, 229(11): 2119−2131. |
15 | WANG X L, ZHANG Y A, WU H L. Distributed cooperative guidance of multiple anti-ship missiles with arbitrary impact angle constraint. Aerospace Science and Technology. 2015, 46: 299−311. |
16 | DHANANJAY N, GHOSE D. Accurate time-to-go estimation for proportional navigation guidance. Journal of Guidance Control and Dynamics. 2014, 37(4): 1378-1383. |
17 |
MUKHERJEE D, KUMAR S R Field-of-view constrained impact time guidance against stationary targets. IEEE Trans. on Aerospace and Electronic Systems, 2021, 57 (5): 3296- 3306.
doi: 10.1109/TAES.2021.3074202 |
18 | HUA W H, ZHANG Y J, ZHANG J P Sliding-mode guidance law for attack time cooperation of multi-missiles. Journal of Chinese Inertial Technology, 2018, 26 (1): 98- 102. |
19 | LIU S X, YAN B B, ZHANG T, et al Guidance law with desired impact time and FOV constrained for antiship missiles based on equivalent sliding mode control. International Journal of Aerospace Engineering, 2021, 2021 (1): 9923332. |
20 |
LEE S, CHO N, KIM Y Impact-time-control guidance strategy with a composite structure considering the seeker’s field-of-view constraint. Journal of Guidance Control and Dynamics, 2020, 43 (8): 1566- 1574.
doi: 10.2514/1.G005063 |
21 |
KIM H G, LEE J Y, KIM H J Look-angle-shaping guidance law for impact angle and time control with field-of-view constraint. IEEE Trans. on Aerospace and Electronic Systems, 2020, 56 (2): 1602- 1612.
doi: 10.1109/TAES.2019.2924175 |
22 |
TAHK M J, RYOO C K, CHO H Recursive time-to-go estimation for homing guidance missiles. IEEE Trans. on Aerospace and Electronic Systems, 2002, 38 (1): 13- 24.
doi: 10.1109/7.993225 |
23 |
SATADAL G, DEBASISH G, SOUMYENDU R Unified time-to-go algorithms for proportional navigation class of guidance. Journal of Guidance Control and Dynamics, 2016, 39 (6): 1188- 1205.
doi: 10.2514/1.G001472 |
24 | MA G X, ZHANG Y A Impact time and impact angle control guidance law for missiles with time-varying velocity. Flight Dynamics, 2013, 31 (3): 255- 259. |
25 |
JIANG Z Y, GE J Q Impact time control cooperative guidance law design based on modified proportional navigation. Aerospace, 2021, 8 (8): 231.
doi: 10.3390/aerospace8080231 |
26 |
MA S, WANG Z Y, WANG X G, et al Three-dimensional impact time control guidance considering field-of-view constraint and velocity variation. Aerospace, 2022, 9 (4): 202.
doi: 10.3390/aerospace9040202 |
27 |
DONG W, DENG F, WANG C Y, et al Three-dimensional spatial-temporal cooperative guidance without active speed control. Journal of Guidance Control and Dynamics, 2023, 46 (10): 1981- 1996.
doi: 10.2514/1.G007641 |
28 |
ZHANG B L, ZHOU D, SHAO C T Closed-form time-to-go estimation for proportional navigation guidance considering drag. IEEE Trans. on Aerospace and Electronic System, 2022, 58 (5): 4705- 4717.
doi: 10.1109/TAES.2022.3164863 |
29 |
ZHU C H, XU G D, WEI C Z, et al Impact-time-control guidance law for hypersonic missiles in terminal phase. IEEE Access, 2020, 8, 44611- 44621.
doi: 10.1109/ACCESS.2020.2971619 |
30 | CHEN X T, WANG J Z. Nonsingular sliding-mode control for field-of-view constrained impact time guidance. Journal of Guidance Control and Dynamics. 2018, 41(5): 1214−1222. |
31 |
ZHANG Y, WANG X, WU H Impact time control guidance law with field of view constraint. Aerospace Science and Technology, 2014, 39, 361- 369.
doi: 10.1016/j.ast.2014.10.002 |
[1] | Hongcheng ZENG, Jiadong DENG, Pengbo WANG, Xinkai ZHOU, Wei YANG, Jie CHEN. A spawning particle filter for defocused moving target detection in GNSS-based passive radar [J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1085-1100. |
[2] | Yuanying GAN, Chuntong LIU, Hongcai LI, Zhongye LIU. A camouflage target detection method based on local minimum difference constraints [J]. Journal of Systems Engineering and Electronics, 2023, 34(3): 696-705. |
[3] | Shengnan FU, Guanqun ZHOU, Qunli XIA. A trajectory shaping guidance law with field-of-view angle constraint and terminal limits [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 426-437. |
[4] | Jia HUANG, Sijiang CHANG, Shengfu CHEN. A hybrid proportional navigation based two-stage impact time control guidance law [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 461-473. |
[5] | Meiyan PAN, Jun SUN, Yuhao YANG, Dasheng LI, Sudao XIE, Shengli WANG, Jianjun CHEN. Improved TQWT for marine moving target detection [J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 470-481. |
[6] | Xiaoxuan Hu, Yanhong Liu, and Guoqiang Wang. Optimal search for moving targets with sensing capabilities using multiple UAVs [J]. Systems Engineering and Electronics, 2017, 28(3): 526-535. |
[7] | Lin Zhang and Yicheng Jiang. Imaging algorithm of multi-ship motion target based on compressed sensing [J]. Systems Engineering and Electronics, 2016, 27(4): 790-. |
[8] | Yan Zhang, Yunhua Zhang, and Xiang Gu. Improved STAP algorithm based on APES [J]. Journal of Systems Engineering and Electronics, 2011, 22(3): 387-392. |
[9] | Zhiwei Yang, Guisheng Liao, Shun He, and Cao Zeng. Target location with signal fitting and sub-aperture tracking for airborne multi-channel radar [J]. Journal of Systems Engineering and Electronics, 2010, 21(5): 752-758. |
[10] | Liu Shujun, Yuan Yunneng, Gao Fei & Mao Shiyi. Method of moving target detection based on sub-image cancellation for single-antenna airborne synthetic aperture radar [J]. Journal of Systems Engineering and Electronics, 2007, 18(3): 448-453. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||