Journal of Systems Engineering and Electronics ›› 2025, Vol. 36 ›› Issue (3): 835-853.doi: 10.23919/JSEE.2025.000065
• CONTROL THEORY AND APPLICATION • Previous Articles
Ruitao ZHANG1,2,3(), Yangwang FANG1,2,3,4(
), Zhan CHEN1,2,3(
), Hang GUO1,2,3,4,*(
), Wenxing FU1,2,3,4(
)
Received:
2024-04-07
Online:
2025-06-18
Published:
2025-07-10
Contact:
Hang GUO
E-mail:1476793301@qq.com;ywfang@nwpu.edu.cn;chenzhan@mail.nwpu.edu.cn;jsguoh@nwpu.edu.cn;wenxingfu@nwpu.edu.cn
About author:
Supported by:
Ruitao ZHANG, Yangwang FANG, Zhan CHEN, Hang GUO, Wenxing FU. Group cooperative midcourse guidance law design considering time-to-go[J]. Journal of Systems Engineering and Electronics, 2025, 36(3): 835-853.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Simulation initial conditions for missiles"
Missile | Initial position | Initial velocity |
Missile 1 | ||
Missile 2 | ||
Missile 3 | ||
Missile 4 | ||
Missile 5 | ||
Missile 6 |
Table 2
Simulation initial conditions for targets"
Target | Initial position | Initial velocity |
Target 1 | ||
Target 2 |
1 |
KIM M, JUNG B, HAN B, et al Lyapunov-based impact time control guidance laws against stationary targets. IEEE Trans. on Aerospace and Electronic Systems, 2015, 51 (2): 1111- 1122.
doi: 10.1109/TAES.2014.130717 |
2 |
CHO D, KIM H J, TAHK M J Nonsingular sliding mode guidance for impact time control. Journal of Guidance, Control, and Dynamics, 2016, 39 (1): 61- 68.
doi: 10.2514/1.G001167 |
3 |
JEON I S, LEE J I Impact-time-control guidance law with constraints on seeker look angle. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (5): 2621- 2627.
doi: 10.1109/TAES.2017.2698837 |
4 | LI Z H, DING Z T Robust cooperative guidance law for simultaneous arrival. IEEE Trans. on Control Systems Technology, 2018, 27 (3): 1360- 1367. |
5 | KIM H G, CHO D, KIM H J Sliding mode guidance law for impact time control without explicit time-to-go estimation. IEEE Trans. on Aerospace and Electronic Systems, 2018, 55 (1): 236- 250. |
6 | KIM H G, SHIN J Lyapunov-based impact time control guidance law with performance prediction. Aerospace, 2023, 10 (3): 308. |
7 |
LYU T, GUO Y N, LI C J, et al Multiple missiles cooperative guidance with simultaneous attack requirement under directed topologies. Aerospace Science and Technology, 2019, 89, 100- 110.
doi: 10.1016/j.ast.2019.03.037 |
8 | ZHANG Y, TANG S J, GUO J Two-stage cooperative guidance strategy using a prescribed-time optimal consensus method. Aerospace Science and Technology, 2020, 100, 105641. |
9 |
DONG X F, REN Z Impact angle constrained distributed cooperative guidance against maneuvering targets with undirected communication topologies. IEEE Access, 2020, 8, 117867- 117876.
doi: 10.1109/ACCESS.2020.3004128 |
10 | JIANG Z Y, GE J Q, XU Q Q, et al Terminal impact time control cooperative guidance law for UAVs under time-varying velocity. Drones, 2021, 5 (3): 100. |
11 |
WANG C Y, DONG W, WANG J N, et al Impact-angle-constrained cooperative guidance for salvo attack. Journal of Guidance, Control, and Dynamics, 2022, 45 (4): 684- 703.
doi: 10.2514/1.G006342 |
12 | XU H, CAI G B, FAN Y H, et al Analytic time reentry cooperative guidance for multi-hypersonic glide vehicles. Applied Sciences, 2023, 13 (8): 4987. |
13 |
YANG G Y, FANG Y W, MA W H, et al Cooperative trajectory shaping guidance law for multiple anti-ship missiles. The Aeronautical Journal, 2024, 128 (1319): 73- 91.
doi: 10.1017/aer.2023.38 |
14 |
YOU H, CHANG X L, ZHAO J F, et al Three-dimensional impact-angle-constrained fixed-time cooperative guidance algorithm with adjustable impact time. Aerospace Science and Technology, 2023, 141, 108574.
doi: 10.1016/j.ast.2023.108574 |
15 | LEE S, KIM J, KIM Y, et al Analytic approach to impact time guidance with look angle constraint using exact time-to-go solution. Journal of Aerospace Engineering, 2024, 37 (2): 04023118. |
16 | OHNISHl K A new servo method in mechatronics. Japanese Society of Electrical Engineering, 1987, 177, 83- 86. |
17 | HE S M, WANG W, WANG J Three-dimensional impact angle guidance laws based on model predictive control and sliding mode disturbance observer. Journal of Dynamic Systems Measurement & Control, 2016, 138 (8): 081006. |
18 |
CHWA D Robust nonlinear disturbance observer-based adaptive guidance law against uncertainties in missile dynamics and target maneuver. IEEE Trans. on Aerospace and Electronic Systems, 2018, 54 (4): 1739- 1749.
doi: 10.1109/TAES.2018.2801392 |
19 |
MAN C Y, LIU R J, LI S H Three-dimensional suboptimal guidance law based on θ-D technique and nonlinear disturbance observer. Proceedings of the Institution of Mechanical Engineers, 2019, 233 (14): 5122- 5133.
doi: 10.1177/0954410019837123 |
20 |
PENG C, ZHANG H W, HE Y X, et al State-following-kernel-based online reinforcement learning guidance law against maneuvering target. IEEE Trans. on Aerospace and Electronic Systems, 2022, 58 (6): 5784- 5797.
doi: 10.1109/TAES.2022.3178770 |
21 | WANG C Y, WANG M, LI H, et al Design of terminal guidance law with acceleration compensation of maneuvering target. Electronic Design Engineering, 2023, 31 (22): 52- 56. |
22 | XU W P, LIAO Y X, WANG Z S, et al Adaptive finite time prescribed performance guidance law for intercepting maneuvering target. Journal of Astronautics, 2023, 44 (10): 1593- 1603. |
23 | YOU H, CHANG X L, ZHAO J F, et al Second-order sliding mode guidance law of a nonsingular fast terminal with a terminal angular constraint. International Journal of Aeronautical and Space Sciences, 2022, 24 (1): 237- 247. |
24 | WANG Y C, WANG W, LEI H B, et al Observer-based robust impact angle control three-dimensional guidance laws with autopilot lag. Aerospace Science and Technology, 2023, 141, 108505. |
25 |
ZHAO Q L, DONG X W, LIANG Z X, et al Distributed group cooperative guidance for multiple missiles with fixed and switching directed communication topologies. Nonlinear Dynamics, 2017, 90 (4): 2507- 2523.
doi: 10.1007/s11071-017-3816-3 |
26 | MA W H, LIANG X G, FANG Y W, et al Three-dimensional prescribed-time pinning group cooperative guidance law. International Journal of Aerospace Engineering, 2021, 2021 (1): 4490211. |
27 |
MA X, DAI K R, ZOU Y, et al Fixed-time anti-saturation grouped cooperative guidance law with state estimations of multiple maneuvering targets. Journal of the Franklin Institute, 2023, 360 (8): 5524- 5547.
doi: 10.1016/j.jfranklin.2023.02.031 |
28 | MA W H, FU W X, FANG Y W, et al Prescribed-time cooperative guidance law with switching communication topologies. Journal of Astronautics, 2023, 44 (1): 86- 98. |
29 |
ZHANG H Q, TANG S J, GUO J Cooperative near-space interceptor mid-course guidance law with terminal handover constraints. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233 (6): 1960- 1976.
doi: 10.1177/0954410018769182 |
30 |
WU Z H, FANG Y W, FU W X, et al Three-dimensional cooperative mid-course guidance law against the maneuvering target. IEEE Access, 2020, 8, 18841- 18851.
doi: 10.1109/ACCESS.2020.2968593 |
31 | WU Z H, REN Q B, LUO Z Q, et al Cooperative midcourse guidance law with communication delay. International Journal of Aerospace Engineering, 2021, 2021 (1): 3460389. |
32 |
GUO X W, FAN Y H, ZHANG M H, et al Design of finite time cooperative mid-course guidance law for unmanned target drone aircrafts. Journal of Northwestern Polytechnical University, 2023, 41 (1): 97- 104.
doi: 10.1051/jnwpu/20234110097 |
33 | YANG H M, LI Y, ZHANG F, et al Guidance law in distributed cooperative air-to-air missile considering detection effectiveness. Control Theory & Applications, 2024, 41 (4): 638- 648. |
34 |
LI S, JIANG X Q RBF neural network based second-order sliding mode guidance for Mars entry under uncertainties. Aerospace Science and Technology, 2015, 43, 226- 235.
doi: 10.1016/j.ast.2015.03.006 |
35 | LUKACS J, YAKIMENKO O. Trajectory-shape-varying missile guidance for interception of ballistic missiles during the boost phase. Proc. of the AIAA Guidance, Navigation and Control Conference and Exhibit, 2007: 6538. |
36 | GE Y T Application of fundamental inequality. Science & Technology Information, 2020, 18 (30): 138- 139. |
37 |
LONG T, YANG S S, WANG Q Z, et al Finite-time consensus of nonlinear multi-agent systems via impulsive time window theory: a two-stage control strategy. Nonlinear Dynamics, 2021, 105 (4): 3285- 3297.
doi: 10.1007/s11071-021-06803-7 |
38 | CHEN L J, ZHANG Y, XIA L L Finite-time consensus for leader-following multi-agent systems. Computer Simulation, 2018, 35 (5): 274- 277. |
39 |
WANG F, CHNE B, LIN C, et al Adaptive neural network finite-time output feedback control of quantized nonlinear systems. IEEE Trans. on Cybernetics, 2018, 48 (6): 1839- 1848.
doi: 10.1109/TCYB.2017.2715980 |
40 |
OLFATI-SABER R, MURRAY R M Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. on Automatic Control, 2004, 49 (9): 1520- 1533.
doi: 10.1109/TAC.2004.834113 |
41 | HE T, LU Q, ZHOU J, et al Terminal impact angle constraint guidance law with neural network interference observer. Systems Engineering and Electronics, 2024, 46 (4): 1372- 1382. |
42 |
LIAO X F, JI L H On pinning group consensus for dynamical multi-agent networks with general connected topology. Neurocomputing, 2014, 135, 262- 267.
doi: 10.1016/j.neucom.2013.12.024 |
[1] | Hao YANG, Shifeng ZHANG, Xibin BAI, Chengye YANG. Impact time control guidance for moving-target considering velocity variation and field-of-view constraint [J]. Journal of Systems Engineering and Electronics, 2025, 36(2): 552-568. |
[2] | Jia HUANG, Sijiang CHANG, Shengfu CHEN. A hybrid proportional navigation based two-stage impact time control guidance law [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 461-473. |
[3] | Xiaojian Zhang, Mingyong Liu, and Yang Li. Sliding mode control and Lyapunov based guidance law with impact time constraints#br# [J]. Journal of Systems Engineering and Electronics, 2017, 28(6): 1186-1192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||