
Journal of Systems Engineering and Electronics ›› 2021, Vol. 32 ›› Issue (4): 731-747.doi: 10.23919/JSEE.2021.000063
• SENSOR ARRAY SIGNAL PROCESSING AND ITS APPLICATIONS IN 5G/6G • Next Articles
					
													Zhiming LIU1,2(
), Jens BORNEMANN1,*(
), Shaobin LIU2(
), Xiangkun KONG2(
)
												  
						
						
						
					
				
Received:2020-12-31
															
							
															
							
															
							
																	Online:2021-08-18
															
							
																	Published:2021-09-30
															
						Contact:
								Jens BORNEMANN   
																	E-mail:lzmedu@foxmail.com;j.bornemann@ieee.org;lsb@nuaa.edu.cn;xkkong@nuaa.edu.cn
																					About author:Supported by:Zhiming LIU, Jens BORNEMANN, Shaobin LIU, Xiangkun KONG. Investigations and prospects of Fabry-Perot antennas: a review[J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 731-747.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Comparison of the existing works"
| Reference | Feature | 10 dB impedance  bandwidth  |  Relative  3 dB gain bandwidth/%  |  Max. Gain  (dBi/dBic)  |  GBP | Height | PRS technology | 
| [ |  Low-profile | 3.7 GHz | ? | 14.81 | ? | 0.05λ | One-layer PRS | 
| [ |  Low-profile | 9.35 GHz | ? | 13.5 | ? | 0.10λ | Substrate-integrated | 
| [ |  Low-profile | 10.5 GHz | ? | 15.0 | ? | 0.30λ | Substrate-integrated | 
| [ |  Low-profile | 9.95 GHz | ? | 12.5 | ? | 0.11λ | Substrate-  integrated+AMC  |  
| [ |  Low-profile | 9.8 GHz | ? | 13.5 | ? | 0.12λ | PRS-AMC | 
| [ |  Wideband | Around 5% | 15.1 | 19.5 | 1346 | 1.41λ | Three-layer FSS | 
| [ |  Wideband | 8.6?11.2 (26.2%) | 28 | 13.8 | 672 | 0.51λ | One-layer FSS | 
| [ |  Wideband | Around 7.1% | 6 | 17.44 | 333 | 0.95λ | Two-layer FSS | 
| [ |  Wideband | Around 25% | 15.7 | 16.2 | 654 | 0.54λ | One-layer FSS | 
| [ |  Wideband | ? | 54.2 | 16.4 | 2366 | 1.01λ | TPG all-dielectric | 
| [ |  Wideband | 10?18.4 (59.2%) | 57 | 20.2 | 5969 | 0.9λ | TPG all-dielectric | 
| [ |  Wideband | 5.8?16 (93.6%) | 86.3 | 14.2 | 2270 | 1.31λ | Truncated three-  layer dielectric  |  
| [ |  Dual-band | 2.42?2.6 (7.2%)  5.2?5.8 (10.9%)  |  7  11  |  14.9  14.2  |  216  289  |  0.45λ  1.0λ  |  Two-layer FSS | 
| [ |  Tri-band | 5.1?5.5 (7.5%)  9.6?10.2 (6.1%) 14.4?16.0 (10.5%)  |  ?  ? ?  |  13.4  18.9 20  |  ?  ? ?  |  0.36λ  0.68λ 1.04λ  |  Two-layer FSS | 
| [ |  Circular polarization | 6.8?11.2 (48.9%) | 50.3 | 14 | 1263 | 0.53λ | One-layer FSS | 
| [ |  Frequency reconfigurable | 4.55?4.7 (3.3%)  5.37?5.63 (4.7%)  |  11.9  8.2  |  13.1  17.1  |  243  421  |  0.42λ  0.50λ  |  One-layer  reconfigurable PRS  |  
| [ |  Radiation pattern  reconfigurable  |  5.5 GHz | ? | 10.4 | ? | 0.46λ | One-layer FSS  with PIN diodes  |  
| [ |  Wideband+polarization reconfigurable | 2.2?2.72 (21%) | 14.6 | 15.1 | 472 | 0.5λ | One-layer FSS | 
| [ |  Polarization reconfigurable | 10.3?11.22 (8.6%) | 7.1 | 12.5 | 126 | 0.53λ | PCM | 
| [ |  Circular polarization+  Low-RCS  |  10.5?10.78 (2.6%) | ? | 10.2 | ? | 0.43λ | One-layer PRS +AS | 
| [ |  Wideband+Low-RCS | 8.64?12.07 (33.1%) | 25.4 | 17.08 | 1297 | 0.68λ | One-layer FSS | 
| [ |  Wideband + Low-RCS | 8.48?12.21 (36.1%) | 25.5 | 17.2 | 1338 | 0.73λ | One-layer  embedded CPCM  |  
| 1 |  
											HOFSTETTER D, THORNTON R L Measurement of optical cavity properties in semiconductor lasers by Fourier analysis of the emission spectrum. IEEE Journal of Quantum Electronics, 1998, 34 (10): 1914- 1923. 
																							 doi: 10.1109/3.720227  | 
										
| 2 |  
											WU B L, WANG M G, DONG Y, et al Magnetic field sensor based on a dual-frequency optoelectronic oscillator using cascaded magnetostrictive alloy-fiber Bragg grating-Fabry Perot and fiber Bragg grating-Fabry Perot filters. Optics express, 2018, 26 (21): 27628- 27638. 
																							 doi: 10.1364/OE.26.027628  | 
										
| 3 |  
											LI Y, ZHANG Y J, CHEN H W Tunable self-injected Fabry-Perot laser diode coupled to an external high-Q Si3N4/SiO2 microring resonator. Journal of Lightwave Technology, 2018, 36 (16): 3269- 3274.  
																							 doi: 10.1109/JLT.2018.2838325  | 
										
| 4 | BRAGINSKY V B, VYATCHANIN S P Low quantum noise tranquilizer for Fabry-Perot interferometer. Physics Letters A, 2002, 293 (5/6): 228- 234. | 
| 5 | LI Z G, TIAN J J, JIAO Y Z, et al Simultaneous measurement of air pressure and temperature using fiber-optic cascaded Fabry-Perot interferometer. IEEE Photonics Journal, 2018, 11 (1): 1- 10. | 
| 6 |  
											VON TRENTINI G Partially reflecting sheet arrays. IRE Trans. on Antennas and Propagation, 1956, 4 (4): 666- 671. 
																							 doi: 10.1109/TAP.1956.1144455  | 
										
| 7 | MUHAMMAD S A, SAULEAU R, VALERIO G, et al Self-polarizing Fabry-Perot antennas based on polarization twisting element. IEEE Trans. on Antennas and Propagation, 2012, 61 (3): 1032- 1040. | 
| 8 |  
											KONSTANTINIDIS K, FERESIDIS A P, HALL P S Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas. IEEE Trans. on Antennas and Propagation, 2014, 62 (7): 3474- 3481. 
																							 doi: 10.1109/TAP.2014.2320755  | 
										
| 9 |  
											WANG N Z, LIU Q, WU C Y, et al Wideband Fabry-Perot resonator antenna with two complementary FSS layers. IEEE Trans. on Antennas and Propagation, 2014, 62 (5): 2463- 2471. 
																							 doi: 10.1109/TAP.2014.2308533  | 
										
| 10 |  
											ZEB B A, GE Y, ESSELLE K P, et al A simple dual-band electromagnetic band gap resonator antenna based on inverted reflection phase gradient. IEEE Trans. on Antennas and Propagation, 2012, 60 (10): 4522- 4529. 
																							 doi: 10.1109/TAP.2012.2207331  | 
										
| 11 |  
											KELLY J R, KOKKINOS T, FERESIDIS A P Analysis and design of sub-wavelength resonant cavity type 2-D leaky-wave antennas. IEEE Trans. on Antennas and Propagation, 2008, 56 (9): 2817- 2825. 
																							 doi: 10.1109/TAP.2008.928791  | 
										
| 12 |  
											JI L Y, GUO Y J, QIN P Y, et al A reconfigurable partially reflective surface (PRS) antenna for beam steering. IEEE Trans. on Antennas and Propagation, 2015, 63 (6): 2387- 2395. 
																							 doi: 10.1109/TAP.2015.2412143  | 
										
| 13 | HASHMI R M, ESSELLE K P A class of extremely wideband resonant cavity antennas with large directivity-bandwidth products. IEEE Trans. on Antennas and Propagation, 2015, 64 (2): 830- 835. | 
| 14 |  
											GARDELLI R, ALBANI M, CAPOLINO F Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement. IEEE Trans. on Antennas and Propagation, 2006, 54 (7): 1979- 1990. 
																							 doi: 10.1109/TAP.2006.877172  | 
										
| 15 |  
											LIU Z M, LIU S B, BIAN B R, et al Metasurface-based low-profile high-gain substrate-integrated Fabry-Perot cavity antenna. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29 (4): e21583. 
																							 doi: 10.1002/mmce.21583  | 
										
| 16 |  
											MATEOSEGURA C, FERESIDIS A P, GOUSSETIS G Bandwidth enhancement of 2-D leaky-wave antennas with double-layer periodic surfaces. IEEE Trans. on Antennas and Propagation, 2014, 62 (2): 586- 593. 
																							 doi: 10.1109/TAP.2013.2292076  | 
										
| 17 |  
											LEE Y J, YEO J, KO K D, et al A novel design technique for control of defect frequencies of an electromagnetic bandgap (EBG) superstrate for dual-band directivity enhancement. Microwave and Optical Technology Letters, 2004, 42 (1): 25- 31. 
																							 doi: 10.1002/mop.20196  | 
										
| 18 |  
											QIN F, GAO S, WEI G, et al Wideband circularly polarized Fabry-Perot antenna. IEEE Antennas and Propagation Magazine, 2015, 57 (5): 127- 135. 
																							 doi: 10.1109/MAP.2015.2470678  | 
										
| 19 | LIU Z M, LIU S B, BORNEMANN J, et al. A wideband fabry-perot antenna with enhanced gain in the high frequency operating band by adopting a truncated field correcting structure. IEEE Trans. on Antennas and Propagation, 2021. DOI: 10.1109/TAP.2021.3090841. | 
| 20 |  
											LIAN R N, TANG Z Y, YIN Y Z Design of a broadband polarization reconfigurable Fabry-Perot resonator antenna. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (1): 122- 125. 
																							 doi: 10.1109/LAWP.2017.2777502  | 
										
| 21 |  
											GUZMAN-QUIROS R, WEILY A R, GOMEZ-TORNERO J L, et al A Fabry-Perot antenna with two-dimensional electronic beam scanning. IEEE Trans. on Antennas and Propagation, 2016, 64 (4): 1536- 1541. 
																							 doi: 10.1109/TAP.2016.2525832  | 
										
| 22 |  
											XIE P, WANG G M, LI H P, et al A dual-polarized two-dimensional beam steering Fabry-Perot cavity antenna with a reconfigurable partially reflecting surface. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 2370- 2374. 
																							 doi: 10.1109/LAWP.2017.2718567  | 
										
| 23 |  
											HUANG C, PAN W B, MA X L, et al A frequency reconfigurable directive antenna with wideband low-RCS property. IEEE Trans. on Antennas and Propagation, 2016, 64 (3): 1173- 1178. 
																							 doi: 10.1109/TAP.2016.2518199  | 
										
| 24 |  
											AKALIN T, DANGLOT J, VANBESIEN O, et al A highly directive dipole antenna embedded in a Fabry-Perot type cavity. IEEE Microwave and Wireless Components Letters, 2002, 12 (2): 48- 50. 
																							 doi: 10.1109/7260.982873  | 
										
| 25 |  
											GE Y H, SUN Z, CHEN Z G, et al A high-gain wideband low-profile Fabry-Perot resonator antenna with a conical short horn. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 1889- 1892. 
																							 doi: 10.1109/LAWP.2016.2542277  | 
										
| 26 | MENG F, SHARMA S K A wideband resonant cavity antenna with compact partially reflective surface. IEEE Trans. on Antennas and Propagation, 2019, 68 (2): 1155- 1160. | 
| 27 | OLINER A A, JACKSON D R, VOLAKIS J L. Antenna engineering handbook. New York: McGrawHill, 2007. | 
| 28 |  
											SENGUPTA S, JACKSON D R, LONG S A Modal analysis and propagation characteristics of leaky waves on a 2-D periodic leaky-wave antenna. IEEE Trans. on Microwave Theory and Techniques, 2018, 66 (3): 1181- 1191. 
																							 doi: 10.1109/TMTT.2017.2783373  | 
										
| 29 |  
											ALMUTAWA A T, HOSSEINI A, JACKSON D R, et al Leaky-wave analysis of wideband planar Fabry-Perot cavity antennas formed by a thick PRS. IEEE Trans. on Antennas and Propagation, 2019, 67 (8): 5163- 5175. 
																							 doi: 10.1109/TAP.2019.2911349  | 
										
| 30 |  
											ZHOU L, DUAN X, LUO Z J, et al High directivity Fabry-Perot antenna with a nonuniform partially reflective surface and a phase correcting structure. IEEE Trans. on Antennas and Propagation, 2020, 68 (11): 7601- 7606. 
																							 doi: 10.1109/TAP.2020.2982514  | 
										
| 31 | JACKSON D, ALEXOPOULOS N Gain enhancement methods for printed circuit antennas. IEEE Trans. on Antennas and Propagation, 1985, 33 (9): 976987. | 
| 32 |  
											YANG H Y, ALEXOPOULOS N G Gain enhancement methods for printed circuit antennas through multiple superstrates. IEEE Trans. on Antennas and Propagation, 1987, 35 (7): 860- 863. 
																							 doi: 10.1109/TAP.1987.1144186  | 
										
| 33 |  
											ZHAO T, JACKSON D R, WILLIAMS J T, et al General formulas for 2-D leaky-wave antennas. IEEE Trans. on Antennas and Propagation, 2005, 53 (11): 3525- 3533. 
																							 doi: 10.1109/TAP.2005.856315  | 
										
| 34 |  
											BOUTAYEB H, DENIDNI T A Internally excited Fabry-Perot type cavity: power normalization and directivity evaluation. IEEE Antennas and Wireless Propagation Letters, 2006, 5, 159- 162. 
																							 doi: 10.1109/LAWP.2006.873944  | 
										
| 35 |  
											GOUDARZI A, HONARI M M, MIRZAVAND R Resonant cavity antennas for 5G communication systems: a review. Electronics, 2020, 9 (7): 1080. 
																							 doi: 10.3390/electronics9071080  | 
										
| 36 | ZHOU L, LI H Q, QIN Y Q, et al. Directive emissions from subwavelength metamaterial-based cavities. Proc. of the IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, 2005. DOI: 10.1109/IWAT.2005.1461045. | 
| 37 |  
											WANG S, FERESIDIS A P, GOUSSETIS G, et al High-gain subwavelength resonant cavity antenna based on metamaterial ground planes. IEE Proceedings—Microwaves, Antennas and Propagation, 2006, 153 (1): 1- 6. 
																							 doi: 10.1049/ip-map:20050090  | 
										
| 38 | COSTA F, MONORCHIO A, MANARA G. Low-profile tunable and steerable Fabry-Perot antenna for software defined radio application. Proc. of the IEEE Antennas and Propagation Society International Symposium, 2010: 1–4. | 
| 39 | ZHU B, CHEN Z N, FENG Y J. Fully substrate-integrated high-gain thin Fabry-Perot cavity antennas. Proc. of the Asia-Pacific Microwave Conference, 2011: 602–605. | 
| 40 |  
											SUN Y, CHEN Z N, ZHANG Y, et al Subwavelength substrate-integrated Fabry-Perot cavity antennas using artificial magnetic conductor. IEEE Trans. on Antennas and Propagation, 2012, 60 (1): 30- 35. 
																							 doi: 10.1109/TAP.2011.2167902  | 
										
| 41 | JI L, WANG J D, CHEN W D, et al. Substrate-integrated Fabry-Perot cavity antenna fed by slot-coupled patch array for directivity enhancement. Proc. of the Asia-Pacific Microwave Conference, 2013: 1067–1069. | 
| 42 |  
											LIU W, CHEN Z N, SEE T S P, et al SIW-slot-fed thin beam-squint-free Fabry-Perot cavity antenna with low backlobe levels. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 552- 554. 
																							 doi: 10.1109/LAWP.2014.2311813  | 
										
| 43 | NGUYEN T K, PARK I Design of a substrate-integrated Fabry-Perot cavity antenna for K-band applications. International Journal of Antennas and Propagation, 2015, 2015, 373801. | 
| 44 | GAO Z D, SU M, TANG B H, et al. Low-profile circularly polarized Fabry-Perot resonator antenna array with substrate integrated waveguide feed network. Proc. of the IEEE International Symposium on Electromagnetic Compatibility, 2017: 1–4. | 
| 45 |  
											GE Z C, ZHANG W X, LIU Z G, et al Broadband and high-gain printed antennas constructed from Fabry-Perot resonator structure using EBG or FSS cover. Microwave and Optical Technology Letters, 2006, 48 (7): 1272- 1274. 
																							 doi: 10.1002/mop.21674  | 
										
| 46 | FERESIDIS A P, VARDAXOGLOU J C. A broadband high-gain resonant cavity antenna with single feed. Proc. of the First European Conference on Antennas and Propagation, 2006: 1–5. | 
| 47 |  
											LIU Z G, ZHAN W X, FU D L, et al Broadband Fabry-Perot resonator printed antennas using FSS superstrate with dissimilar size. Microwave and Optical Technology Letters, 2008, 50 (6): 1623- 1627. 
																							 doi: 10.1002/mop.23456  | 
										
| 48 |  
											WU Z H, ZHANG W X Broadband printed compound air-fed array antennas. IEEE Antennas and Wireless Propagation Letters, 2010, 9, 187- 190. 
																							 doi: 10.1109/LAWP.2010.2045470  | 
										
| 49 |  
											GE Y, ESSELLE K P, BIRD T S The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas. IEEE Trans. on Antennas and Propagation, 2012, 60 (2): 743- 750. 
																							 doi: 10.1109/TAP.2011.2173113  | 
										
| 50 |  
											PIRHADI A, BAHRAMI H, NASRI J Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer. IEEE Trans. on Antennas and Propagation, 2012, 60 (4): 2101- 2106. 
																							 doi: 10.1109/TAP.2012.2186230  | 
										
| 51 |  
											LEGER L, MONEDIERE T, JECKO B Enhancement of gain and radiation bandwidth for a planar 1-D EBG antenna. IEEE Microwave and Wireless Components Letters, 2005, 15 (9): 573- 575. 
																							 doi: 10.1109/LMWC.2005.855373  | 
										
| 52 |  
											HASHMI R M, ZEB B A, ESSELLE K P Wideband high-gain EBG resonator antennas with small footprints and all-dielectric superstructures. IEEE Trans. on Antennas and Propagation, 2014, 62 (6): 2970- 2977. 
																							 doi: 10.1109/TAP.2014.2314534  | 
										
| 53 |  
											WU K L, YIN W Y, ZHANG L, et al A wideband EBG resonator antenna with an extremely small footprint area. Microwave and Optical Technology Letters, 2015, 57 (7): 1531- 1535. 
																							 doi: 10.1002/mop.29134  | 
										
| 54 |  
											BABA A A, HASHMI R M, ESSELLE K P Achieving a large gain-bandwidth product from a compact antenna. IEEE Trans. on Antennas and Propagation, 2017, 65 (7): 3437- 3446. 
																							 doi: 10.1109/TAP.2017.2700016  | 
										
| 55 |  
											BABA A A, HASHMI R M, ESSELLE K P, et al Compact high-gain antenna with simple all-dielectric partially reflecting surface. IEEE Trans. on Antennas and Propagation, 2018, 66 (8): 4343- 4348. 
																							 doi: 10.1109/TAP.2018.2842247  | 
										
| 56 |  
											NGUYEN-TRONG N, TRAN H H, NGUYEN T K, et al Wideband Fabry-Perot antennas employing multilayer of closely spaced thin dielectric slabs. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (7): 1354- 1358. 
																							 doi: 10.1109/LAWP.2018.2846240  | 
										
| 57 |  
											LEE D H, LEE Y J, YEO J, et al Design of novel thin frequency selective surface superstrates for dual-band directivity enhancement. IET Microwaves, Antennas and Propagation, 2007, 1 (1): 248- 254. 
																							 doi: 10.1049/iet-map:20050318  | 
										
| 58 | ZEB B A, GE Y, ESSELLE K P. A single-layer thin partially reflecting surface for tri-band directivity enhancement. Proc. of the Asia-Pacific Microwave Conference, 2012: 559–561. | 
| 59 |  
											ABDELGHANI M L, ATTIA H, DENIDNI T A Dual- and wideband Fabry-Perot resonator antenna for WLAN applications. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 473- 476. 
																							 doi: 10.1109/LAWP.2016.2585087  | 
										
| 60 |  
											QIN F, GAO S, LUO Q, et al A triband low-profile high-gain planar antenna using Fabry-Perot cavity. IEEE Trans. on Antennas and Propagation, 2017, 65 (5): 2683- 2688. 
																							 doi: 10.1109/TAP.2017.2670564  | 
										
| 61 |  
											CHEN J Q, ZHAO Y J, GE Y, et al Dual-band high-gain Fabry-Perot cavity antenna with a shared-aperture FSS layer. IET Microwaves, Antennas and Propagation, 2018, 12 (13): 2007- 2011. 
																							 doi: 10.1049/iet-map.2018.5183  | 
										
| 62 |  
											QIN F, GAO S S, LUO Q, et al, et al A simple low-cost shared-aperture dual-band dual-polarized high-gain antenna for synthetic aperture radars. IEEE Trans. on Antennas and Propagation, 2016, 64 (7): 2914- 2922. 
																							 doi: 10.1109/TAP.2016.2559526  | 
										
| 63 | XIE P, WANG G M, KONG X X, et al Design of a novel metasurface for dual-band Fabry-Perot cavity antenna. International Journal of RF and Microwave Computer-Aided Engineering, 2017, 28 (2): 1- 7. | 
| 64 | CHEN C, LIU Z G, WANG H, et al. Metamaterial-inspired self-polarizing dual-band dual-orthogonal circularly polarized Fabry-Perot resonator antennas IEEE Trans. on Antennas and Propagation, 2018, 67 (2): 1329- 1334. | 
| 65 |  
											DENG C J, LI Y, ZHANG Z J, et al A circularly polarized pattern diversity antenna for hemispherical coverage. IEEE Trans. on Antennas and Propagation, 2014, 62 (10): 5365- 5369. 
																							 doi: 10.1109/TAP.2014.2342763  | 
										
| 66 |  
											WANG A K, YANG L, ZHANG Y, et al A novel planar dual circularly polarized endfire antenna. IEEE Access, 2019, 7, 64297- 64302. 
																							 doi: 10.1109/ACCESS.2019.2915996  | 
										
| 67 |  
											TRAN H H, TA S X, PARK I Single-feed, wideband, circularly polarized, crossed bowtie dipole antenna for global navigation satellite systems. Journal of Electromagnetic Engineering and Science, 2014, 14 (3): 299- 305. 
																							 doi: 10.5515/JKIEES.2014.14.3.299  | 
										
| 68 |  
											CHOI E C, LEE J W, LEE T K, et al Circularly polarized S-band satellite antenna with parasitic elements and its arrays. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 1689- 1692. 
																							 doi: 10.1109/LAWP.2014.2347998  | 
										
| 69 | SHI J, WU X, QING X M, et al An omnidirectional circularly polarized antenna array. IEEE Trans. on Antennas and Propagation, 2015, 64 (2): 574- 581. | 
| 70 |  
											WEILY A R, ESSELLE K P, BIRD T S, et al High gain circularly polarised 1-D EBG resonator antenna. IET Electronics Letters, 2006, 42 (18): 1012- 1013. 
																							 doi: 10.1049/el:20061552  | 
										
| 71 |  
											LIU Z G, LU W B Broadband design of circularly polarized high-gain Fabry-Perot resonator antenna with simple array thinning technique. Microwave and Optical Technology Letters, 2017, 59 (12): 3171- 3176. 
																							 doi: 10.1002/mop.30900  | 
										
| 72 | TRAN H H, LE T T, BUI C D, et al Broadband circularly polarized Fabry-Perot antenna utilizing Archimedean spiral radiator and multi-layer partially reflecting surface. International Journal of RF and Microwave Computer-Aided Engineering, 2018, 29 (3): 1- 7. | 
| 73 |  
											CAO W Q, LV X M, WANG Q Q, et al Wideband circularly polarized Fabry-Perot resonator antenna in Ku-band. IEEE Antennas and Wireless Propagation Letters, 2019, 18 (4): 586- 590. 
																							 doi: 10.1109/LAWP.2019.2896940  | 
										
| 74 | TRAN H H, NGUYEN-TRONG N, NGUYEN T K Low-profile wideband Fabry-Perot resonator antenna using artificial magnetic conductor surface. Microwave and Optical Technology Letters, 2018, 61 (2): 316- 322. | 
| 75 |  
											DIBLANC M, RODES E, ARNAUD E, et al Circularly polarized metallic EBG antenna. IEEE Microwave and Wireless Components Letters, 2005, 15 (10): 638- 640. 
																							 doi: 10.1109/LMWC.2005.856689  | 
										
| 76 |  
											ORR R, GOUSSETIS G, FUSCO V Design method for circularly polarized Fabry-Perot cavity antennas. IEEE Trans. on Antennas and Propagation, 2014, 62 (1): 19- 26. 
																							 doi: 10.1109/TAP.2013.2286839  | 
										
| 77 | LIU Z G, LU W B Low-profile design of broadband high gain circularly polarized Fabry-Perot resonator antenna and its array with linearly polarized feed. IEEE Access, 2017, 5 (1): 7164- 7172. | 
| 78 |  
											REN J Y, JIANG W, ZHANG K Z, et al A high-gain circularly polarized Fabry-Perot antenna with wideband low-RCS property. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (5): 853- 856. 
																							 doi: 10.1109/LAWP.2018.2820015  | 
										
| 79 |  
											WEILY A R, BIRD T S, GUO Y J A reconfigurable high-gain partially reflecting surface antenna. IEEE Trans. on Antennas and Propagation, 2008, 56 (11): 3382- 3390. 
																							 doi: 10.1109/TAP.2008.2005538  | 
										
| 80 |  
											XIE P, WANG G M Design of a frequency reconfigurable Fabry-Perot cavity antenna with single layer partially reflecting surface. Progress in Electromagnetics Research Letters, 2017, 70, 115- 121. 
																							 doi: 10.2528/PIERL17072505  | 
										
| 81 |  
											HAO Y, ALOMAINY A H, PARINI C G Antenna-beam shaping from offset defects in UC-EBG cavities. Microwave and Optical Technology Letters, 2004, 43 (2): 108- 112. 
																							 doi: 10.1002/mop.20391  | 
										
| 82 |  
											DEBOGOVIC T, PERRUISSEAU-CARRIER J Array-fed partially reflective surface antenna with independent scanning and beamwidth dynamic control. IEEE Trans. on Antennas and Propagation, 2014, 62 (1): 446- 449. 
																							 doi: 10.1109/TAP.2013.2287018  | 
										
| 83 | DEBOGOVIC T, PERRUISSEAU-CARRIER J, BARTOLIC J, et al Partially reflective surface antenna with dynamic beamwidth control. IEEE Antennas and Wireless Propagation Letters, 2010, 9 (3): 1157- 1160. | 
| 84 | DEBOGOVIC T, PERRUISSEAU-CARRIER J Dual-polarized beamwidth-reconfigurable Fabry-Perot antenna in monolithic MEMS technology. Proc. of the IEEE Antennas and Propagation Society International Symposium, 2013, 754- 755. | 
| 85 |  
											JI L Y, ZHANG Z Y, LIU N W A two-dimensional beam-steering partially reflective surface (PRS) antenna using a reconfigurable FSS structure. IEEE Antennas and Wireless Propagation Letters, 2019, 18 (6): 1076- 1080. 
																							 doi: 10.1109/LAWP.2019.2907641  | 
										
| 86 |  
											SULTAN F, MITU S S I Superstrate-based beam scanning of a Fabry-Perot cavity antenna. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 1187- 1190. 
																							 doi: 10.1109/LAWP.2015.2499261  | 
										
| 87 | LAN J H, SUN B H, YAN W B, et al A beam scanning Fabry-Perot cavity antenna for millimeter-wave applications. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29 (5): 1- 5. | 
| 88 | GUO C L, LIU F F, CHEN S, et al Advances on exploiting polarization in wireless communications: channels, technologies, and applications. IEEE Communications Surveys & Tutorials, 2016, 19 (1): 125- 166. | 
| 89 |  
											LV X L, WU B, ZHAO Y T, et al Dual-band dual-polarization reconfigurable THz antenna based on graphene. Applied Physics Express, 2020, 13 (7): 075007. 
																							 doi: 10.35848/1882-0786/ab9e4b  | 
										
| 90 | JI L Y, QIN P Y, GUO Y J, et al. A wideband polarization reconfigurable antenna for WLAN applications. Proc. of the 10th European Conference on Antennas and Propagation, 2016: 1−3. | 
| 91 | HAN W W, OUYANG J, GUO Z, et al. A single-feed high-gain Fabry-Perot antenna with reconfigurable polarization capability. Proc. of the Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, 2013: 279–281. | 
| 92 |  
											VAIDYA A R, GUPTA R K, MISHRA S K, et al Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 431- 434. 
																							 doi: 10.1109/LAWP.2014.2308926  | 
										
| 93 |  
											TRAN H H, PARK H C A simple design of polarization reconfigurable Fabry-Perot resonator antenna. IEEE Access, 2020, 8, 91837- 91842. 
																							 doi: 10.1109/ACCESS.2020.2995182  | 
										
| 94 |  
											LI W T, GAO S, CAI Y M, et al Polarization-reconfigurable circularly polarized planar antenna using switchable polarizer. IEEE Trans. on Antennas and Propagation, 2017, 65 (9): 4470- 4477. 
																							 doi: 10.1109/TAP.2017.2730240  | 
										
| 95 |  
											NI C, LIU C Q, ZHANG Z X, et al Design of broadband high gain polarization reconfigurable Fabry-Perot cavity antenna using metasurface. Frontiers in Physics, 2020, 8, 316. 
																							 doi: 10.3389/fphy.2020.00316  | 
										
| 96 |  
											ZHANG X, CHEN C, JIANG S, et al A high-gain polarization reconfigurable antenna using polarization conversion metasurface. Progress in Electromagnetics Research, 2020, 105, 1- 10. 
																							 doi: 10.2528/PIERC20052001  | 
										
| 97 |  
											PAN W B, HUANG C, CHEN P, et al A low-RCS and high-gain partially reflecting surface antenna. IEEE Trans. on Antennas and Propagation, 2014, 62 (2): 945- 949. 
																							 doi: 10.1109/TAP.2013.2291008  | 
										
| 98 |  
											LI W Q, CAO X Y, GAO J, et al Broadband RCS reduction and gain enhancement microstrip antenna using shared aperture artificial composite material based on quasi-fractal tree. IET Microwaves, Antennas and Propagation, 2016, 10 (4): 370- 377. 
																							 doi: 10.1049/iet-map.2015.0311  | 
										
| 99 |  
											JIANG H, XUE Z H, LI W M, et al Low-RCS high-gain partially reflecting surface antenna with metamaterial ground plane. IEEE Trans. on Antennas and Propagation, 2016, 64 (9): 4127- 4132. 
																							 doi: 10.1109/TAP.2016.2589964  | 
										
| 100 |  
											MU J, WANG H, WANG H, et al Low-RCS and gain enhancement design of a novel partially reflecting and absorbing surface antenna. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 1903- 1906. 
																							 doi: 10.1109/LAWP.2017.2685623  | 
										
| 101 |  
											HAKIM L M V A, AANANDAN C K Radar cross section reduction of low profile Fabry-Perot resonator antenna using checkerboard artificial magnetic conductor. Advanced Electromagnetics, 2018, 7 (2): 76- 82. 
																							 doi: 10.7716/aem.v7i2.686  | 
										
| 102 |  
											ZHENG Y J, GAO J, ZHOU Y L, et al Wideband gain enhancement and RCS reduction of Fabry-Perot resonator antenna with chessboard arranged metamaterial superstrate. IEEE Trans. on Antennas and Propagation, 2018, 66 (2): 590- 599. 
																							 doi: 10.1109/TAP.2017.2780896  | 
										
| 103 |  
											ZARBAKHSH S, AKBARI M, SAMADI F, et al Broadband and high-gain circularly-polarized antenna with low RCS. IEEE Trans. on Antennas and Propagation, 2019, 67 (1): 16- 23. 
																							 doi: 10.1109/TAP.2018.2876234  | 
										
| 104 |  
											LIU Z M, LIU S B, ZHAO X, et al Wideband gain enhancement and RCS reduction of Fabry-Perot antenna using hybrid reflection method. IEEE Trans. on Antennas and Propagation, 2020, 68 (9): 6497- 6505. 
																							 doi: 10.1109/TAP.2020.2988949  | 
										
| 105 |  
											LI K, LIU Y, JIA Y T, et al A circularly polarized high-gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces. IEEE Trans. on Antennas and Propagation, 2017, 65 (8): 4288- 4292. 
																							 doi: 10.1109/TAP.2017.2710231  | 
										
| 106 |  
											LONG M, JIANG W, GONG S X Wideband RCS reduction using polarization conversion metasurface and partially reflecting surface. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 2534- 2537. 
																							 doi: 10.1109/LAWP.2017.2731862  | 
										
| 107 |  
											ZHENG Q, GUO C J, DING J Wideband and low RCS planar circularly polarized array based on polarization conversion of metasurface. Microwave and Optical Technology Letters, 2018, 60 (3): 784- 789. 
																							 doi: 10.1002/mop.31050  | 
										
| 108 |  
											LIU Z, LIU S, BORNEMANN J, et al A low-RCS, high-GBP Fabry-Perot antenna with embedded chessboard polarization conversion metasurface. IEEE Access, 2020, 8, 80183- 80194. 
																							 doi: 10.1109/ACCESS.2020.2990602  | 
										
| 109 |  
											ZHANG L, WAN X, LIU S, et al Realization of low scattering for a high-gain Fabry-Perot antenna using coding metasurface. IEEE Trans. on Antennas and Propagation, 2017, 65 (7): 3374- 3383. 
																							 doi: 10.1109/TAP.2017.2700874  | 
										
| 110 |  
											JIA Y T, LIU Y, ZHANG W B, et al High-gain Fabry-Perot antennas with wideband low monostatic RCS using phase gradient metasurface. IEEE Access, 2019, 7, 4816- 4824. 
																							 doi: 10.1109/ACCESS.2018.2886832  | 
										
| No related articles found! | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||