Journal of Systems Engineering and Electronics ›› 2022, Vol. 33 ›› Issue (6): 1108-1118.doi: 10.23919/JSEE.2022.000136
• ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Changju ZHU(), Maozhong SONG(
), Xiaoyu DANG(
), Qiuming ZHU(
)
Received:
2021-03-17
Online:
2022-12-24
Published:
2022-12-24
Contact:
Maozhong SONG
E-mail:zhu_cj@nuaa.edu.cn;smz108@nuaa.edu.cn;dang@nuaa.edu.cn;zhuqiuming@nuaa.edu.cn
About author:
Supported by:
Changju ZHU, Maozhong SONG, Xiaoyu DANG, Qiuming ZHU. Two-dimensional directional modulation with dual-mode vortex beam for security transmission[J]. Journal of Systems Engineering and Electronics, 2022, 33(6): 1108-1118.
Table 3
Parameters for OAM-DM system"
Parameter | Value |
Antenna number of UCAInner M | 8 |
Antenna number of UCAOuter M | 8 |
Radius of UCAInner R1 | λ |
Radius of UCAOuter R2 | 1.5λ |
OAM mode l | ±1, ±2 |
Operation frequency f/GHz | 2.4 |
Length of array element antenna | λ |
Bandwidth/MHz | 4 |
Desired direction /(°) | (δ0, γ0) |
1 | FOUDA R M, BAUM T C, KAMRAN G Quasi-orbital angular momentum (Q-OAM) generated by quasi-circular array antenna (QCA). Scientific Reports, 2018, 8 (1): 1- 11. |
2 |
WANG Z, ZHANG N, YUAN X C High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication. Optics Express, 2011, 19 (2): 482- 492.
doi: 10.1364/OE.19.000482 |
3 |
YANG P, XIAO Y, XIAO M, et al 6G wireless communications: vision and potential techniques. IEEE Network, 2019, 33 (4): 70- 75.
doi: 10.1109/MNET.2019.1800418 |
4 | GAO X L, HUANG S G, ZHOU J, et al Generating, multiplexing/demultiplexing and receiving the orbital angular momentum of radio frequency signals using an optical true time delay unit. Journal of Optics, 2013, 15 (10): 1- 6. |
5 |
CHEN G T, JIAO Y C, ZHAO G A reflectarray for generating wideband circularly polarized orbital angular momentum vortex wave. IEEE Antennas and Wireless Propagation Letters, 2019, 18 (1): 182- 186.
doi: 10.1109/LAWP.2018.2885345 |
6 | ZHANG C, MA L Millimetre wave with rotational orbital angular momentum. Scientific Reports, 2016, 6 (31921): 1- 9. |
7 |
SHEN F, MU J, GUO K, et al Generation of continuously variable-mode vortex electromagnetic waves with three- dimensional helical antenna. IEEE Antennas and Wireless Propagation Letters, 2019, 18 (6): 1091- 1095.
doi: 10.1109/LAWP.2019.2907931 |
8 | CHENG L, HONG W, HAO Z C Generation of electromagnetic waves with arbitrary orbital angular momentum modes. Scientific Reports, 2014, 4 (4817): 1- 5. |
9 |
MOHAMMADI S M, DALDORFF L K S, BERGMAN J E S, et al Orbital angular momentum in radio-a system study. IEEE Trans. on Antennas and Propagation, 2010, 58 (2): 565- 572.
doi: 10.1109/TAP.2009.2037701 |
10 |
LIU Y L, CHEN H H, WANG L M, et al Physical layer security for next generation wireless networks: theories, technologies, and challenges. IEEE Communications Surveys and Tutorials, 2017, 19 (1): 347- 376.
doi: 10.1109/COMST.2016.2598968 |
11 | SHU F, SHEN T, XU L, et al Directional modulation: a physical-layer security solution to B5G and future wireless networks. IEEE Network, 2019, 34 (2): 210- 215. |
12 |
SUN X, NG D W K, DING Z, et al Physical layer security in UAV systems: challenges and opportunities. IEEE Wireless Communications, 2019, 26 (5): 40- 47.
doi: 10.1109/MWC.001.1900028 |
13 |
DALY M P, BERNHARD J T Directional modulation technique for phased arrays. IEEE Trans. on Antennas and Propagation, 2009, 57 (9): 2633- 2640.
doi: 10.1109/TAP.2009.2027047 |
14 |
HONG T, SONG M Z, LIU Y Directional spread-spectrum modulation signal for physical layer security communication applications. Security and Communication Networks, 2013, 6 (2): 182- 193.
doi: 10.1002/sec.554 |
15 |
DING Y, FUSCO V A vector approach for the analysis and synthesis of directional modulation transmitters. IEEE Trans. on Antennas and Propagation, 2014, 62 (1): 361- 370.
doi: 10.1109/TAP.2013.2287001 |
16 |
DING Y, FUSCO V Orthogonal vector approach for synthesis of multi-beam directional modulation transmitters. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 1330- 1333.
doi: 10.1109/LAWP.2015.2404818 |
17 | ZHAO S M, GONG L Y, LI Y Q, et al A large-alphabet quantum key distribution protocol using orbital angular momentum entanglement. Chinese Physics Letters, 2013, 30 (6): 305- 343. |
18 | DJORDJEVIC I B OAM-based hybrid free-space optical- terahertz multidimensional coded modulation and physical- layer security. IEEE Photonics Journal, 2017, 9 (4): 7905812. |
19 | SUN X, DJORDJEVIC I B Physical-layer security in orbital angular momentum multiplexing free-space optical communications. IEEE Photonics Journal, 2016, 8 (1): 1- 10. |
20 | WANG T L, GARIANO J A, DJORDJEVIC I B Employing Bessel-Gaussian beams to improve physical-layer security in free-space optical communications. IEEE Photonics Journal, 2018, 10 (5): 1- 13. |
21 | WANG T L, DJORDJEVIC I B Physical-layer security of a binary data sequence transmitted with Bessel-Gaussian beams over an optical wiretap channel. IEEE Photonics Journal, 2018, 10 (6): 7908611. |
22 | HUANG W Q, LI Y, WEI D, et al Research on physical layer security scheme based on OAM: modulation for wireless communications. Wireless Algorithms, Systems, and Applications, 2019, 11604, 573- 586. |
23 | HU T, WANG Y, MA B, et al Orbit angular momentum MIMO with mode selection foe UAV-Assisted A2G networks. Sensors, 2020, 20 (8): 2289. |
24 |
CHEN C, LONG W X, WANG X, et al Multi-mode OAM radio waves: generation, angle of arrival estimation and reception with UCAs. IEEE Trans. on Wireless Communications, 2020, 19 (10): 6932- 6947.
doi: 10.1109/TWC.2020.3007026 |
25 |
AHMED S, CHOWDHURY M Z, JANG Y M Energy-efficient UAV relaying communications to serve ground nodes. IEEE Communications Letters, 2020, 24 (4): 849- 852.
doi: 10.1109/LCOMM.2020.2965120 |
26 |
XIONG F, LI A J, WANG H, et al An SDN-MQTT based communication system for battlefield UAV swarms. IEEE Communications Magazine, 2019, 57 (8): 41- 47.
doi: 10.1109/MCOM.2019.1900291 |
27 |
ZHU Q B, JIANG T, CAO Y, et al Radio vortex for future wireless broadband communications with high capacity. IEEE Wireless Communications, 2015, 22 (6): 98- 104.
doi: 10.1109/MWC.2015.7368830 |
28 |
HU T, WANG Y, LIAO X, et al OFDM-OAM modulation for future wireless communications. IEEE Access, 2019, 7, 59114- 59125.
doi: 10.1109/ACCESS.2019.2915035 |
29 |
TIAN Z J, CHEN R, LONG W X, et al Broadband beam steering for misaligned multi-mode OAM communication systems. Journal of Systems Engineering and Electronics, 2021, 32 (4): 779- 788.
doi: 10.23919/JSEE.2021.000067 |
30 | EDFORS O, JOHANSSON A J Is orbital angular momentum (OAM) based radio communication an unexploited area?. IEEE Trans. on Antennas and Propagation, 2012, 60 (2): 1126- 1131. |
[1] | Zhengjuan TIAN, Rui CHEN, Wenxuan LONG, Hong ZHOU, Marco MORETTI. Broadband beam steering for misaligned multi-mode OAM communication systems [J]. Journal of Systems Engineering and Electronics, 2021, 32(4): 779-788. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||