Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (6): 1614-1625.doi: 10.23919/JSEE.2023.000023
• SYSTEMS ENGINEERING • Previous Articles Next Articles
Sheng TONG(), Hong QU(), Junjie XUE()
Received:
2021-11-03
Online:
2023-12-18
Published:
2023-12-29
Contact:
Sheng TONG
E-mail:amisc87861@gmail.com;262432358@qq.com;xuejunjiekjgcdx@163.com
About author:
Supported by:
Sheng TONG, Hong QU, Junjie XUE. K-DSA for the multiple traveling salesman problem[J]. Journal of Systems Engineering and Electronics, 2023, 34(6): 1614-1625.
Table 7
Results of ACO running 16 executions"
Run time | Best route to take | Weight |
1 | 1→2→3→4→5→1 | 67 |
2 | 1→2→5→4→3→1 | 60 |
3 | 1→2→3→4→5→1 | 68 |
4 | 1→2→3→4→5→1 | 68 |
5 | 1→2→5→3→4→1 | 57 |
6 | 1→4→3→5→2→1 | 57 |
7 | 1→4→3→5→2→1 | 57 |
8 | 1→2→5→4→3→1 | 60 |
9 | 1→2→4→3→5→1 | 67 |
10 | 1→4→3→2→5→1 | 60 |
11 | 1→4→2→5→3→1 | 65 |
12 | 1→4→3→2→5→1 | 60 |
13 | 1→2→5→4→3→1 | 60 |
14 | 1→3→4→5→2→1 | 60 |
15 | 1→2→5→4→3→1 | 60 |
16 | 1→3→2→5→4→1 | 65 |
Table 8
Comparison of IPGA and other intelligent algorithms"
n | m | IWO | ABC | IPSO | K-DSA | |||||||||||
Mean | Best | Var. | Mean | Best | Var. | Mean | Best | Var. | Mean | Best | Var. | |||||
51 | 3 | 515 | 495 | 11.4 | 489 | 475 | 9.7 | 507 | 499 | 22.2 | 511 | 482 | 21.4 | |||
5 | 508 | 485 | 11.2 | 486 | 474 | 11.9 | 559 | 511 | 32.8 | 495 | 468 | 13.2 | ||||
8 | 499 | 481 | 11 | 481 | 470 | 12.1 | 535 | 505 | 23.8 | 497 | 483 | 10.7 | ||||
10 | 494 | 478 | 11.7 | 479 | 472 | 11.1 | 528 | 481 | 23 | 500 | 482 | 12.3 | ||||
100 | 3 | 44 034 | 41 834 | 1 056 | 3 2387 | 3 0137 | 940 | 34 111 | 32 020 | 2 223 | 29 189 | 26 370 | 1 952 | |||
5 | 42 877 | 41 255 | 902 | 30 882 | 29 772 | 733 | 37 280 | 34 576 | 2 328 | 32 773 | 27 129 | 3 773 | ||||
8 | 39 891 | 37 251 | 1 623 | 29 536 | 28 626 | 945 | 42 344 | 39 560 | 3 510 | 31 859 | 27 758 | 3 362 | ||||
10 | 41 239 | 38 511 | 1 215 | 29 516 | 28 966 | 921 | 36 365 | 35 728 | 3 963 | 28 745 | 27 651 | 836 | ||||
150 | 3 | 57 244 | 56 083 | 1 162 | 42 103 | 40 975 | 1 128 | 44 344 | 41 677 | 2 668 | 37 946 | 35 213 | 2 733 | |||
5 | 55 740 | 54 748 | 992.2 | 40 147 | 39 267 | 879.6 | 48 464 | 45 670 | 2 794 | 42 605 | 37 323 | 5 282 | ||||
8 | 51 858 | 50 073 | 1 785 | 38 397 | 37 263 | 1 134 | 55 047 | 50 835 | 4 212 | 41 417 | 36 710 | 4 707 | ||||
10 | 53 611 | 52 274 | 1 337 | 38 371 | 37 266 | 1 105 | 47 275 | 42 519 | 4 756 | 37 369 | 36 198 | 1 170 | ||||
200 | 3 | 76 681 | 74 103 | 1 520 | 63 257 | 61 612 | 872 | 58 677 | 56 384 | 3 480 | 46 963 | 42 736 | 3 535 | |||
5 | 75 321 | 74 876 | 925 | 58 358 | 56 437 | 1 277 | 68 374 | 63 917 | 3 692 | 51 882 | 48 683 | 1 792 | ||||
8 | 74 817 | 72 436 | 1 400 | 56 088 | 54 464 | 1 408 | 76 862 | 75 362 | 2 443 | 57 109 | 50 282 | 3 066 | ||||
10 | 74 204 | 72 458 | 1 341 | 53 519 | 50 630 | 1 564 | 81 719 | 80 704 | 2 789 | 52 713 | 49 832 | 2 959 |
1 | YAN C, WANG Z J Study on the TSP based on an improved energy function and transiently chaotic neural network model. Journal of System Simulation, 2006, 18 (5): 1402- 1405. |
2 |
BALACHANDAR S R, KANNAN K Randomized gravitational emulation search algorithm for symmetric traveling salesman problem. Applied Mathematics and Computation, 2007, 192 (2): 413- 421.
doi: 10.1016/j.amc.2007.03.019 |
3 | YANG N, TIAN W F, JIN Z H Crossover tabu search for traveling salesman problem. Journal of System Simulation, 2006, 18 (4): 897- 899. |
4 | SHEN X J, LIU Y Y, HUANG Y P, et al Fast ant colony algorithm for solving traveling salesman problem. Journal of Jilin University: Engineering and Technology Edition, 2013, 43 (1): 147- 151. |
5 | WANG Y P, LI Y H A novel quantum genetic algorithm for TSP. Chinese Journal of Computers, 2007, 30 (5): 748- 755. |
6 | GAO H B, ZHOU C, GAO L General particle swarm optimization model. Chinese Journal of Computers, 2005, 28 (5): 1980- 1987. |
7 | REN Z W, XIONG R, CHU J Hybrid quantum differential evolutionary algorithm and its applications. Control Theory & Applications, 2011, 28 (10): 1349- 1355. |
8 | ZHOU Y Q, HUANG Z X Artificial glow worm swarm optimization algorithm for TSP. Control and Decision, 2012, 27 (12): 1816- 1821. |
9 | FENG X, ZHANG J W, YU H Q Mosquito host-seeking algorithm for TSP problem. Chinese Journal of Computers, 2014, 37 (8): 1794- 1808. |
10 | WU H S, ZHANG F M, LI H, et al Discrete wolf pack algorithm for traveling salesman problem. Control and Decision, 2015, 30 (10): 1861- 1867. |
11 | ZHANG X L, CHEN X W, XIAO H, et al A new imperialist competitive algorithm for solving TSP problem. Control and Decision, 2013, 31 (4): 586- 592. |
12 | WANG J W, DAI G M, XIE B Q A survey of solving the traveling salesman problem. Computer Engineering & Science, 2008, 30 (2): 72- 74. |
13 | WANG Y Z, CHEN Y, YU Y Y Improved grouping genetic algorithm for solving multiple traveling salesman problem. Journal of Electronics & Information Technology, 2017, 39 (11): 198- 205. |
14 |
RIGHINI G, TRUBIAN M A note on the approximation of the asymmetric traveling salesman problem. European Journal of Operational Research, 2004, 153 (1): 255- 265.
doi: 10.1016/S0377-2217(02)00794-4 |
15 |
GORENSTEIN S Printing press scheduling for multi-edition periodicals. Management Science, 1970, 16 (6): 373- 383.
doi: 10.1287/mnsc.16.6.B373 |
16 | ZHANG T H, GRUVER W A, SMITH M H Team scheduling by genetic search. Proc. of the 2nd International Conference on Intelligent Processing and Manufacturing of Materials, 1999, 839- 844. |
17 |
ANGEL R D, CAUDLE W L, NOONAN R, et al Computer assisted school bus scheduling. Management Science, 1972, 18 (6): 279- 288.
doi: 10.1287/mnsc.18.6.B279 |
18 |
GILBERT K C, HOFSTRA R B A new multiperiod multiple traveling salesman problem with heuristic and application to a scheduling problem. Decision Sciences, 1992, 23 (1): 250- 259.
doi: 10.1111/j.1540-5915.1992.tb00387.x |
19 | BRUMMIT B, STENTZ A Dynamic mission planning for multiple mobile robots. Proc. of the IEEE International Conference on Robotics and Automation, 1996, 2396- 2401. |
20 | ZHONG Y, LIANG J H, GU G C, et al An implementation of evolutionary computation for path planning of cooperative mobile robots. Proc. of the 4th World Congress on Intelligent Control and Automation, 2002, 1798- 1802. |
21 |
CARTER A E, RAGSDALE C T A new approach to solving the multiple traveling salesperson problem using genetic algorithms. European Journal of Operational Research, 2006, 175 (1): 246- 257.
doi: 10.1016/j.ejor.2005.04.027 |
22 |
ZHOU H L, SONG M L, PEDRYCZ W A comparative study of improved GA and PSO in solving multiple traveling salesmen problem. Applied Soft Computing, 2018, 64, 564- 580.
doi: 10.1016/j.asoc.2017.12.031 |
23 |
SINGH S, VENKATESH S K, WANG Z, et al Diagnostic performance of magnetic resonance elastography in staging liver fibrosis: a systematic review and meta-analysis of individual participant data. Clinical Gastroenterology and Hepatology, 2015, 13 (3): 440- 451.
doi: 10.1016/j.cgh.2014.09.046 |
24 | REN H, HUANG H, SONG Z, et al Genetic algorithm on MTSP within polar coordinates and time consumption with respect to various variables. International Core Journal of Engineering, 2021, 7 (1): 291- 296. |
25 |
BEKTAS T The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega, 2006, 34 (3): 209- 219.
doi: 10.1016/j.omega.2004.10.004 |
26 | FANG H Y, YANG T H, ZONG F X, et al Path optimization of multi-UAV cooperative reconnaissance based on MMTSP algorithm. Journal of Logistical Engineering University, 2017, 33 (3): 85- 90. |
27 |
HOU M S, LIU D B A novel method for solving the multiple traveling salesmen problem with multiple depots. Chinese Science Bulletin, 2012, 57 (15): 1886- 1892.
doi: 10.1007/s11434-012-5162-7 |
28 | RAMADHANI T, HERTONO G F, HANDARI B D. An ant colony optimization algorithm for solving the fixed destination multi-depot multiple traveling salesman problem with non-random parameters. AIP Conference Proceedings, 2017, 1862(1): 30−123. |
29 | KOUBAA A, CHEIKHROUHOU O, BENNACEUR H, et al Move and improve: a market-based mechanism for the multiple depot multiple travelling salesmen problem. Journal of Intelligent & Robotic Systems, 2017, 85 (2): 307- 330. |
30 | ZHOU H L, SONG M L. An improvement of partheno-genetic algorithm to solve multiple travelling salesmen problem. Proc. of the 15th International Conference on Computer and Information Science, 2016. DOI: 10.1109/ICIS.2016.7550780. |
31 | HE L, WU L D, CAI Y C Summary of clustering algorithms in data mining. Application Research of Computers, 2007, 24 (1): 10- 13. |
32 | XIE C B, YUAN C Y Improved method of fuzzy partition clustering for optimal classification. System Engineering, 1997, 15 (1): 58- 63. |
33 |
CILIBRASI R L, VITANYI P M B A fast quartet tree heuristic for hierarchical clustering. Pattern Recognition, 2011, 44 (3): 662- 677.
doi: 10.1016/j.patcog.2010.08.033 |
34 | LI K, WANG L Research on cluster integration method of hierarchical clustering. Computer Engineering and Applications, 2010, 46 (27): 120- 123. |
35 | WU J W, LI X F, SUN T Neighborhood balanced density clustering algorithm. Computer Research and Development, 2010, 47 (6): 1044- 1052. |
36 | CHEN N, CHEN A, ZHOU L X Density-based incremental grid clustering algorithm. Journal of Software, 2002, 13 (1): 1- 7. |
37 | KANUNGO T, MOUNT D M A local search approximation algorithm for k-means clustering. Computational Geometry, 2004, 28 (2/3): 89- 112. |
38 | ELKAN C Using the triangle inequality to accelerate k-means. Proc. of the 2nd AAAI International Conference on Machine Learning, 2003, 147- 153. |
39 |
SHAMSALDIN A S, RASHID T A, AL-RASHID A R A, et al Donkey and smuggler optimization algorithm: a collaborative working approach to path finding. Journal of Computational Design and Engineering, 2019, 6 (4): 562- 583.
doi: 10.1016/j.jcde.2019.04.004 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||