Journal of Systems Engineering and Electronics ›› 2023, Vol. 34 ›› Issue (6): 1508-1519.doi: 10.23919/JSEE.2023.000040
• ELECTRONICS TECHNOLOGY • Previous Articles Next Articles
Piming MA1(), Peng ZHAO1(), Zhiquan BAI1,*(), Xu DONG1(), Xinghai YANG2(), Kyungsup KWAK3()
Received:
2021-10-25
Online:
2023-12-18
Published:
2024-01-02
Contact:
Zhiquan BAI
E-mail:mapiming@sdu.edu.cn;929616871@qq.com;zqbai@sdu.edu.cn;dongxu@mail.sdu.edu.cn;yangxh@qust.edu.cn;kskwak@inha.ac.kr
About author:
Supported by:
Piming MA, Peng ZHAO, Zhiquan BAI, Xu DONG, Xinghai YANG, Kyungsup KWAK. Coalitional game based resource allocation in D2D-enabled V2V communication[J]. Journal of Systems Engineering and Electronics, 2023, 34(6): 1508-1519.
Table 1
Notation of symbols"
Notation | Meaning of the representative |
The channel gain from the FCU | |
The channel gain from the FCU | |
The channel gain from the V2V Tx | |
The channel gain from the V2V Tx | |
The channel gain from the V2V Tx | |
The number of V2V links | |
The number of FCUs | |
V2V set of | |
FCU set of | |
The transmit power of FCU | |
The maximum interference power from the V2V links to the FCU uplinks | |
The minimum SINR of the FCU uplink | |
The transmit power vector of V2V links, | |
The maximum transmit power of V2V Tx |
Table 3
System parameters"
Parameter | Value |
Cellular coverage/m | |
The eNB’s height/m | |
Distance from the highway to eNB/m | |
Number of lanes | |
Lane width/m | |
Vehicle drop model | Spatial Poisson process |
Vehicle and CU antenna height/m | |
Absolute vehicle speed/(km/h) | |
Average inter-vehicle distance/m | |
Carrier frequency/GHz | |
Bandwidth/MHz | |
Vehicle antenna gain/dBi | |
eNB antenna gain/dBi | |
Vehicle receiver noise figure/dB | |
eNB receiver noise figure/dB | |
CU SINR threshold ( | |
Maximum V2V transmit power ( | |
Maximum CU transmit power ( | |
Noise power ( | |
The number of CUs |
11 |
LIU Z, HAN X, LIU Y, et al D2D-based vehicular communication with delayed CSI feedback. IEEE Access, 2018, 6, 52857- 52866.
doi: 10.1109/ACCESS.2018.2870166 |
12 |
LIANG L, XIE S J, LI G Y, et al Graph-based resource sharing in vehicular communication. IEEE Trans. on Wireless Communications, 2018, 17 (7): 4579- 4592.
doi: 10.1109/TWC.2018.2827958 |
13 |
ZHANG X R, PENG M G, YAN S, et al Deep-reinforcement-learning-based mode selection and resource allocation for cellular V2X communications. IEEE Internet of Things Journal, 2020, 7 (7): 6380- 6391.
doi: 10.1109/JIOT.2019.2962715 |
14 |
SONG L Y, NIYATO D, HAN Z, et al Game-theoretic resource allocation methods for device-to-device communication. IEEE Wireless Communications, 2014, 21 (3): 136- 144.
doi: 10.1109/MWC.2014.6845058 |
15 |
HE C L, CHEN Q, PAN C H, et al Resource allocation schemes based on coalition games for vehicular communications. IEEE Communications Letters, 2019, 23 (12): 2340- 2343.
doi: 10.1109/LCOMM.2019.2943316 |
16 |
LI Y, JIN D P, YUAN J, et al Coalitional games for resource allocation in the device-to-device uplink underlaying cellular networks. IEEE Trans. on Wireless Communications, 2014, 13 (7): 3965- 3977.
doi: 10.1109/TWC.2014.2325552 |
17 |
WEI Z, ALI M M Convex mixed integer nonlinear programming problems and an outer approximation algorithm. Journal of Global Optimization, 2015, 63 (2): 213- 227.
doi: 10.1007/s10898-015-0284-5 |
18 |
SAAD W, HAN Z, DEBBAH M, et al Coalitional game theory for communication networks. IEEE Signal Processing Magazine, 2009, 26 (5): 77- 97.
doi: 10.1109/MSP.2009.000000 |
19 |
CHEN Y L, AI B, NIU Y, et al Resource allocation for device-to-device communications underlaying heterogeneous cellular networks using coalitional games. IEEE Trans. on Wireless Communications, 2018, 17 (6): 4163- 4176.
doi: 10.1109/TWC.2018.2821151 |
20 |
PAPANDRIOPOULOS J, EVANS J S SCALE: a low-complexity distributed protocol for spectrum balancing in multiuser DSL networks. IEEE Trans. on Information Theory, 2009, 55 (8): 3711- 3724.
doi: 10.1109/TIT.2009.2023751 |
21 | STEPHEN B, LIEVEN V. Convex optimization. Cambridge: Cambridge University Press, 2004. |
22 | FANG B, QIAN Z P, ZHONG W, et al Iterative precoding for MIMO wiretap channels using successive convex approximation. Proc. of the IEEE 4th Asia-Pacific Conference on Antennas and Propagation, 2015, 65- 66. |
23 | 3rd Generation Partnership Project. Technical specification group radio access network. https://www.3gpp.org/ftp/Specs/archive/21_series/21.914/. |
24 | MARTIN D, NOKIA S, GERMANY W M, et al. Radio technologies and concepts for IMT-advanced. Singapore: Markono, 2009. |
1 |
ARANITI G, CAMPOLO C, CONDOLUCI M, et al LTE for vehicular networking: a survey. IEEE Communications Magazine, 2013, 51 (5): 148- 157.
doi: 10.1109/MCOM.2013.6515060 |
2 |
KARAGIANNIS G, ALTINTAS O, EKIKC E, et al Vehicular networking: a survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Communications Surveys and Tutorials, 2011, 13 (4): 584- 616.
doi: 10.1109/SURV.2011.061411.00019 |
3 |
PAPADIMITRATOS P, DE LA FORTELLE A, EVENSEEN K, et al Vehicular communication systems: enabling technologies, applications, and future outlook on intelligent transportation. IEEE Communications Magazine, 2009, 47 (11): 84- 95.
doi: 10.1109/MCOM.2009.5307471 |
4 |
DOPPLER K, RINNE M, WIJTING C, et al Device-to-device communication as an underlay to LTE-advanced networks. IEEE Communications Magazine, 2009, 47 (12): 42- 49.
doi: 10.1109/MCOM.2009.5350367 |
5 |
CHENG X, YANG L Q, SHEN X D2D for intelligent transportation systems: a feasibility study. IEEE Trans. on Intelligent Transportation Systems, 2015, 16 (4): 1784- 1793.
doi: 10.1109/TITS.2014.2377074 |
6 |
BAI Z Q, LI M Q, DONG Y N, et al Joint fair resource allocation of D2D communication underlaying downlink cellular system with imperfect CSI. IEEE Access, 2018, 6, 63131- 63142.
doi: 10.1109/ACCESS.2018.2873364 |
7 |
LIANG L, LI G Y, XU W Resource allocation for D2D-enabled vehicular communications. IEEE Trans. on Communications, 2017, 65 (7): 3186- 3197.
doi: 10.1109/TCOMM.2017.2699194 |
8 |
LUO Y, HONG P L, SU R L, et al Resource allocation for energy harvesting-powered D2D communication underlaying cellular networks. IEEE Trans. on Vehicular Technology, 2017, 66 (11): 10486- 10498.
doi: 10.1109/TVT.2017.2727144 |
9 |
LIU Z X, XIE Y A, CHAN K Y, et al Chance-constrained optimization in D2D-based vehicular communication network. IEEE Trans. on Vehicular Technology, 2019, 68 (5): 5045- 5058.
doi: 10.1109/TVT.2019.2904291 |
10 |
REN Y, LIU F Q, LIU Z, et al Power control in D2D-based vehicular communication networks. IEEE Trans. on Vehicular Technology, 2015, 64 (12): 5547- 5562.
doi: 10.1109/TVT.2015.2487365 |
[1] | Yuanshi ZHANG, Minghai PAN, Weijun LONG, Hua LI, Qinghua HAN. Joint waveform selection and power allocation algorithm in manned/unmanned aerial vehicle hybrid swarm based on chance-constraint programming [J]. Journal of Systems Engineering and Electronics, 2022, 33(3): 551-562. |
[2] | Dongju CAO, Wendong YANG, Hui CHEN, Yang WU, Xuanxuan TANG. Energy efficiency maximization for buffer-aided multi-UAV relaying communications [J]. Journal of Systems Engineering and Electronics, 2022, 33(2): 312-321. |
[3] | Kai Zhao and Yongcheng Sun. Genetic-optimization framework for SVC transmission based on partial cooperative communication [J]. Systems Engineering and Electronics, 2017, 28(5): 861-870. |
[4] | Guoyan Li, Youguang Zhang, and Wang Kang. SER analysis and power allocation for hybrid cooperative transmission system [J]. Journal of Systems Engineering and Electronics, 2012, 23(5): 661-670. |
[5] | Jiang Haining , Luo Han-wen , Tian J if eng, Song Wentao & Liu Xingzhao. Efficient coding schemes with power allocation using space-time-frequency spreading* [J]. Journal of Systems Engineering and Electronics, 2006, 17(2): 263-267. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||