Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (1): 55-64.doi: 10.23919/JSEE.2023.000148
• RADAR DETECTION AND INTERFERENCE SUPPRESSION • Previous Articles
Shichao CHEN1,*(), Feng LUO2(), Min TIAN2(), Wanghan LYU1()
Received:
2022-07-06
Accepted:
2023-11-06
Online:
2024-02-18
Published:
2024-03-05
Contact:
Shichao CHEN
E-mail:scchen0115@163.com;luofeng@xidian.edu.cn;tianminbright@163.com;lwanghan@njtech.edu.cn
About author:
Supported by:
Shichao CHEN, Feng LUO, Min TIAN, Wanghan LYU. Short-time maritime target detection based on polarization scattering characteristics[J]. Journal of Systems Engineering and Electronics, 2024, 35(1): 55-64.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 4
Detection performance in different false probabilities through the three methods when 0.128 s %"
Dataset | ASCR/dB | Method | Pf | ||
1993_310 | 2.52 | PolE | — | 3.91 | 20.31 |
DopplerE | 0.98 | 5.28 | 26.56 | ||
CPD-SW | 8.40 | 13.67 | 33.59 | ||
1993_280 | 6.20 | PolE | — | — | 5.47 |
DopplerE | 0.59 | 4.10 | 35.94 | ||
CPD-SW | 15.63 | 22.46 | 46.68 | ||
1993_17 | 10.64 | PolE | — | — | 6.25 |
DopplerE | 9.38 | 26.95 | 59.77 | ||
CPD-SW | 38.09 | 42.58 | 63.48 | ||
1993_320 | 11.95 | PolE | — | 0.78 | 6.25 |
DopplerE | 10.55 | 14.45 | 32.62 | ||
CPD-SW | 6.84 | 41.41 | 75.20 | ||
1998_3113 | 7.66 | PolE | — | — | 6.74 |
DopplerE | — | 10.04 | 20.73 | ||
CPD-SW | 20.51 | 25.64 | 29.70 | ||
1998_5704 | 15.35 | PolE | — | — | — |
DopplerE | — | — | 10.47 | ||
CPD-SW | 46.79 | 53.21 | 61.11 | ||
1998_2525 | 15.36 | PolE | 10.53 | 26.20 | 63.26 |
DopplerE | 15.60 | 40.17 | 73.29 | ||
CPD-SW | 67.74 | 70.09 | 76.07 | ||
1998_2225 | 16.43 | PolE | 15.32 | 30.90 | 58.25 |
DopplerE | 18.16 | 43.16 | 72.22 | ||
CPD-SW | 68.16 | 70.94 | 73.72 |
Table 5
Detection performance in anomaly detection for Dataset 1993_280 in different observation time %"
Observation time/s | Method | |||
DBEA | 3D-FPC-FM | 3D-PFM | 3D-FPC-FM with | |
0.128 | 0.8385 | 0.8516 | 0.8638 | 0.8940 |
0.512 | 0.8582 | 0.8858 | 0.8810 | 0.9063 |
1.024 | 0.8620 | 0.8711 | 0.8997 | 0.9102 |
4.096 | 0.8854 | 0.8802 | 0.9323 | 0.9427 |
1 |
FAN Y F, TAO M L, SU J, et al Analysis of goodness-of-fit method based on local property of statistical model for airborne sea clutter data. Digital Signal Processing, 2020, 99, 102653.
doi: 10.1016/j.dsp.2019.102653 |
2 |
SHI Y L, XIE X Y, LI D C Range distributed floating target detection in sea clutter via feature-based detector. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (12): 1847- 1850.
doi: 10.1109/LGRS.2016.2614750 |
3 |
HU J, GAO J B, YAO K, et al Detection of low observable targets within sea clutter by structure function based multifractal analysis. IEEE Trans. on Antennas and Wireless Propagation, 2006, 54 (1): 136- 143.
doi: 10.1109/TAP.2005.861541 |
4 |
HAYKIN S, BAKKE R, CURRIE B W Uncovering nonlinear dynamics-the case study of sea clutter. Proceedings of the IEEE, 2002, 90 (5): 860- 881.
doi: 10.1109/JPROC.2002.1015011 |
5 | ZHANG R, ZUO L, WANG P F, et al. IMMPDA algorithm for missile tracking in clutter. Proc. of the International Conference on Control, Automation and Information Sciences, 2021. DOI: 10.1109/ICCAIS52680.2021.9624617. |
6 |
PANAGOPOULOS S, SORAGHAN J J Small-target detection in sea clutter. IEEE Trans. on Geoscience and Remote Sensing, 2004, 42 (7): 1355- 1361.
doi: 10.1109/TGRS.2004.827259 |
7 |
CARRETERO M J, GISMERO M J, BLANCO C A, et al Statistical analysis of a high-resolution sea-clutter database. IEEE Trans. on Geoscience and Remote Sensing, 2010, 48 (4): 2024- 2037.
doi: 10.1109/TGRS.2009.2033193 |
8 | LIU J, WAN X, LIU H W Small target detection in sea clutter background based on Doppler spectrum characteristics. Modern Radar, 2008, 30 (11): 63- 66. |
9 |
GU T C Detection of small floating targets on the sea surface based on multi-features and principal component analysis. IEEE Geoscience and Remote Sensing Letters, 2020, 17 (5): 809- 813.
doi: 10.1109/LGRS.2019.2935262 |
10 |
FAN Y F, LUO F, LI M, et al Weak target detection in sea clutter background using local-multifractal spectrum with adaptive window length. IET Radar, Sonar & Navigation, 2015, 9 (7): 835- 842.
doi: 10.1049/iet-rsn.2014.0286 |
11 |
FAN Y F, LUO F, LI M, et al Fractal properties of autoregressive spectrum and its application on weak target detection. IET Radar, Sonar & Navigation, 2015, 9 (8): 1070- 1077.
doi: 10.1049/iet-rsn.2014.0473 |
12 |
SHUI P L, LI D C, XU S W Tri-feature-based detection of floating small targets in sea clutter. IEEE Trans. on Aerospace and Electronic Systems, 2014, 50 (2): 1416- 1430.
doi: 10.1109/TAES.2014.120657 |
13 |
SHI S N, SHUI P L Sea-surface floating small target detection by one-class classifier in time-frequency feature space. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56 (11): 6395- 6411.
doi: 10.1109/TGRS.2018.2838260 |
14 |
FAN Y F, TAO M L, SU J, et al Weak target detection based on joint fractal characteristics of autoregressive spectrum in sea clutter background. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (12): 1824- 1828.
doi: 10.1109/LGRS.2019.2912329 |
15 |
GUO Z X, SHUI P L, BAI X H Small target detection in sea clutter using all-dimensional Hurst exponents of complex time sequence. Digital Signal Processing, 2020, 101, 102707.
doi: 10.1016/j.dsp.2020.102707 |
16 | XU S W, BAI X H, GUO Z X, et al Status and prospects of feature-based detection methods for floating targets on the sea surface. Journal of Radars, 2020, 9 (4): 684- 714. |
17 |
XU S W, ZHU J N, JIANG J, et al Sea-surface floating small target detection by multifeature detector based on isolation forest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 704- 715.
doi: 10.1109/JSTARS.2020.3033063 |
18 |
CHEN X L, GUAN J, HE Y, et al Detection of low observable moving target in sea clutter via fractal characteristics in fractional Fourier transform domain. IET Radar, Sonar, & Navigation, 2013, 7 (6): 635- 651.
doi: 10.1049/iet-rsn.2012.0116 |
19 |
BHATTACHARYA T, HAYKIN S Neural network-based radar detection for an ocean environment. IEEE Trans. on Aerospace and Electronic Systems, 1997, 33 (2): 408- 420.
doi: 10.1109/7.575874 |
20 | WEN L W, DING J S, XU Z Multiframe detection of sea-surface small target using deep convolutional neural network. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5107116. |
21 |
GAO Y, ZHOU Y, WANG Y, et al Narrowband radar automatic target recognition based on a hierarchical fusing network with multidomain features. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (6): 1039- 1043.
doi: 10.1109/LGRS.2020.2993039 |
22 |
WU P, WANG J, WANG W G, et al Small target detection in sea clutter based on polarization characteristics decomposition. Journal of Electronics Information Technology, 2011, 33 (4): 816- 822.
doi: 10.1109/36.551935 |
23 | CLOUDE S, POTTIER E An entropy-based classification scheme for land applications of polarimetric SAR. IEEE Trans. on Geoscience and Remote Sensing, 1997, 35, 68- 78. |
24 | KROGAGER E, BOERNER W, MADSEN S. Feature-motivated Sinclair matrix (sphere/diplane/helix) decomposition and its application to target sorting for land feature classification. Proc. of the SPIE, 1997. DOI: 10.1117/12.300620. |
25 |
LI G N, LI Y, HOU Y C, et al Marine oil slick detection using improved polarimetric feature parameters based on polarimetric synthetic aperture radar data. Remote Sensing, 2021, 13 (9): 1607.
doi: 10.3390/rs13091607 |
26 | XU S W, ZHENG J B, PU J, et al Sea-surface floating small target detection based on polarization features. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (10): 1505- 1509. |
27 |
GEORGE W R, HOURA R, WILLIAM L C Polarimetric SAR signature detection using the Cameron decomposition. IEEE Trans. on Geoscience and Remote Sensing, 2014, 52, 690- 700.
doi: 10.1109/TGRS.2013.2243737 |
28 |
CHEN S C, LUO F, LUO X X Multi-view feature-based sea surface small target detection in short observation time. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (7): 1189- 1193.
doi: 10.1109/LGRS.2020.2994341 |
29 | WU P, WANG J, WANG W G, et al Small target detection in sea clutter based on polarization characteristics decomposition. Journal of Electronics & Information Technology, 2011, 33 (4): 816- 822. |
[1] | Yong YANG, Boyu YANG. Overview of radar detection methods for low altitude targets in marine environments [J]. Journal of Systems Engineering and Electronics, 2024, 35(1): 1-13. |
[2] | Shuwen XU, Yifan HAO, Zhuo WANG, Jian XUE. Persymmetric adaptive polarimetric detection of subspace range-spread targets in compound Gaussian sea clutter [J]. Journal of Systems Engineering and Electronics, 2024, 35(1): 31-42. |
[3] | Xiaolong CHEN, Jian GUAN, Jibin ZHENG, Yue ZHANG, Xiaohan YU. Radar fast long-time coherent integration via TR-SKT and robust sparse FRFT [J]. Journal of Systems Engineering and Electronics, 2023, 34(5): 1116-1129. |
[4] | Cong XU, Zishu HE, Haicheng LIU, Yadan LI. Bayesian track-before-detect algorithm for nonstationary sea clutter [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1338-1344. |
[5] | Liangkui LIN, Shaoyou WANG, Zhongxing TANG. Using deep learning to detect small targets in infrared oversampling images [J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 947-952. |
[6] | Yongpeng Zhu, Yinsheng Wei, and Peng Tong. First order sea clutter cross section for bistatic shipborne HFSWR [J]. Systems Engineering and Electronics, 2017, 28(4): 681-. |
[7] | Xinglin Shen, Zhiyong Song, Yongfeng Zhu, and Qiang Fu. Fractal detector design and application in maritime target detection [J]. Systems Engineering and Electronics, 2017, 28(1): 27-. |
[8] | Xiujie Qu, He Chen, and Guihua Peng. Novel detection method for infrared small targets using weighted information entropy [J]. Journal of Systems Engineering and Electronics, 2012, 23(6): 838-842. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||