Journal of Systems Engineering and Electronics ›› 2024, Vol. 35 ›› Issue (1): 81-93.doi: 10.23919/JSEE.2022.000128
• ELECTRONICS TECHNOLOGY • Previous Articles
Abdul Hayee SHAIKH(), Xiaoyu DANG(), Daqing HUANG()
Received:
2021-09-22
Accepted:
2022-06-27
Online:
2024-02-18
Published:
2024-03-05
Contact:
Abdul Hayee SHAIKH
E-mail:shaikhhayee@yahoo.com;dang@nuaa.edu.cn;857337053@qq.com
About author:
Supported by:
Abdul Hayee SHAIKH, Xiaoyu DANG, Daqing HUANG. Triad-displaced ULAs configuration for non-circular sources with larger continuous virtual aperture and enhanced degrees of freedom[J]. Journal of Systems Engineering and Electronics, 2024, 35(1): 81-93.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Table 1
Comparison of achievable DOF"
Array configuration | Number of sensors N | |||||||
7 | 9 | 10 | 11 | 13 | 14 | 17 | 21 | |
NA | 37 | 57 | 69 | 81 | 109 | 125 | 177 | 261 |
INA | 43 | 65 | 77 | 91 | 121 | 137 | 193 | 281 |
NSANCS | 61 | 97 | 117 | 141 | 193 | 221 | 321 | 481 |
MISC | 43 | 69 | 81 | 93 | 129 | 145 | 201 | 297 |
SANC | 65 | 105 | 129 | N/A | N/A | N/A | N/A | N/A |
NNA | N/A | N/A | 93 | N/A | N/A | 211 | N/A | N/A |
NADiS | 55 | 89 | 109 | 131 | 181 | 209 | 305 | 461 |
Proposed array | 65 | 105 | 129 | 153 | 205 | 237 | 339 | 501 |
1 |
WAN L T, HAN G J, SHU L, et al The application of DOA estimation approach in patient tracking systems with high patient density. IEEE Trans. on Industrial Informatics, 2016, 12 (6): 2353- 2364.
doi: 10.1109/TII.2016.2569416 |
2 | QIN Y H, LIU Y M, LIU J Y, et al Underdetermined wideband DOA estimation for off-grid sources with coprime array using sparse bayesian learning. Sensors, 2018, 18 (1): 253. |
3 |
SHAIKH A H, DANG X Y, AHMED T, et al New transmit-receive array configurations for the MIMO radar with enhanced degrees of freedom. IEEE Communications Letters, 2020, 24 (7): 1534- 1538.
doi: 10.1109/LCOMM.2020.2983403 |
4 |
SHAIKH A H, DANG X Y, HUANG D Q New generalized multi-structured mimo radar configuration with increased degrees of freedom. IEEE Communications Letters, 2021, 25 (4): 1293- 1297.
doi: 10.1109/LCOMM.2021.3049855 |
5 |
SHAN T J, WAX M, KAILATH T On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans. on Acoustics Speech and Signal Processing, 1985, 33 (4): 806- 811.
doi: 10.1109/TASSP.1985.1164649 |
6 |
ROY R, KAILATH T ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. on Acoustics Speech and Signal Processing, 1989, 37 (7): 984- 995.
doi: 10.1109/29.32276 |
7 |
LI J F, JIANG D F, ZHANG X F DOA estimation based on combined unitary ESPRIT for coprime MIMO radar. IEEE Communications Letters, 2017, 21 (1): 96- 99.
doi: 10.1109/LCOMM.2016.2618789 |
8 |
ZHENG Z, HUANG Y X, WANG W Q, et al Augmented covariance matrix reconstruction for DOA estimation using difference coarray. IEEE Trans. on Signal Processing, 2021, 69, 5345- 5358.
doi: 10.1109/TSP.2021.3113468 |
9 |
HE Z Q, SHI Z P, HUANG L, et al Underdetermined DOA estimation for wideband signals using robust sparse covariance fitting. IEEE Signal Processing Letters, 2015, 22 (4): 435- 439.
doi: 10.1109/LSP.2014.2358084 |
10 |
MA W K, HSIEH T H, CHI C Y DOA estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance: a Khatri-Rao subspace approach. IEEE Trans. on Signal Processing, 2010, 58 (4): 2168- 2180.
doi: 10.1109/TSP.2009.2034935 |
11 |
AHMED A, ZHANG Y D Generalized non-redundant sparse array designs. IEEE Trans. on Signal Processing, 2021, 69, 4580- 4594.
doi: 10.1109/TSP.2021.3100977 |
12 |
HOCTOR R T, KASSAM S A The unifying role of the coarray in aperture synthesis for coherent and incoherent imaging. Proceedings of the IEEE, 1990, 78 (4): 735- 752.
doi: 10.1109/5.54811 |
13 |
BOUDAHER E, AHMAD F, AMIN M G, et al Mutual coupling effect and compensation in non-uniform arrays for direction-of-arrival estimation. Digital Signal Processing, 2017, 61 (2): 3- 14.
doi: 10.1016/j.dsp.2016.06.005 |
14 |
MOFFET A Minimum-redundancy linear arrays. IEEE Trans. on Antennas and Propagation, 1968, 16 (2): 172- 175.
doi: 10.1109/TAP.1968.1139138 |
15 |
ISHIGURO M Minimum redundancy linear arrays for a large number of antennas. Radio Science, 1980, 15 (6): 1163- 1170.
doi: 10.1029/RS015i006p01163 |
16 |
LINEBARGER D A, SUDBOROUGH I H, TOLLIS I G Difference bases and sparse sensor arrays. IEEE Trans. on Information Theory, 1993, 39 (2): 716- 721.
doi: 10.1109/18.212309 |
17 |
PAL P, VAIDYANATHAN P P Multiple level nested array: an efficient geometry for 2qth order cumulant based array processing. IEEE Trans. on Signal Processing, 2012, 60 (3): 1253- 1269.
doi: 10.1109/TSP.2011.2178410 |
18 |
PAL P, VAIDYANATHAN P P Nested arrays: a novel approach to array processing with enhanced degrees of freedom. IEEE Trans. on Signal Processing, 2010, 58 (8): 4167- 4181.
doi: 10.1109/TSP.2010.2049264 |
19 |
VAIDYANATHAN P P, PAL P Sparse sensing with co-prime samplers and arrays. IEEE Trans. on Signal Processing, 2011, 59 (2): 573- 586.
doi: 10.1109/TSP.2010.2089682 |
20 |
QIN S, ZHANG Y D, AMIN M G Generalized coprime array configurations for direction-of-arrival estimation. IEEE Trans. on Signal Processing, 2015, 63 (6): 1377- 1390.
doi: 10.1109/TSP.2015.2393838 |
21 |
LIU C L, VAIDYANATHAN P P Super nested arrays: linear sparse arrays with reduced mutual coupling—part I: fundamentals. IEEE Trans. on Signal Processing, 2016, 64 (15): 3997- 4012.
doi: 10.1109/TSP.2016.2558159 |
22 |
YANG M L, SUN L, YUAN X, et al Improved nested array with hole-free DCA and more degrees of freedom. Electronics Letters, 2016, 52 (25): 2068- 2070.
doi: 10.1049/el.2016.3197 |
23 |
ZHENG Z, YANG C L, WANG W Q, et al Robust DOA estimation against mutual coupling with nested array. IEEE Signal Processing Letters, 2020, 27, 1360- 1364.
doi: 10.1109/LSP.2020.3011314 |
24 |
LIU J Y, ZHANG Y M, LU Y L, et al Augmented nested arrays with enhanced DOF and reduced mutual coupling. IEEE Trans. on Signal Processing, 2017, 65 (21): 5549- 5563.
doi: 10.1109/TSP.2017.2736493 |
25 |
ZHAO P J, HU G B, QU Z Y, et al Enhanced nested array configuration with hole-free co-array and increasing degrees of freedom for DOA estimation. IEEE Communications Letters, 2019, 23 (12): 2224- 2228.
doi: 10.1109/LCOMM.2019.2947585 |
26 | PAL P, VAIDYANATHAN P P Coprime sampling and the music algorithm. Proc. of the Digital Signal Processing and Signal Processing Education Meeting, 2011, 289- 294. |
27 |
ZHOU C W, GU Y J, FAN X, et al Direction-of-arrival estimation for coprime array via virtual array interpolation. IEEE Trans. on Signal Processing, 2018, 66 (22): 5956- 5971.
doi: 10.1109/TSP.2018.2872012 |
28 | YADAV S K, GEORGE N V Fast direction-of-arrival estimation via coarray interpolation based on truncated nuclear norm regularization. IEEE Trans. on Circuits and Systems II: Express Briefs, 2020, 68 (4): 1522- 1526. |
29 |
MAHMUD T H A, SHABIR K, ZHENG R, et al Interpolating coprime arrays with translocated and axis rotated compressed subarrays by iterative power factorization for DOA estimation. IEEE Access, 2018, 6, 16445- 16453.
doi: 10.1109/ACCESS.2018.2803050 |
30 |
ZHENG Z, WANG W Q, KONG Y, et al MISC array: a new sparse array design achieving increased degrees of freedom and reduced mutual coupling effect. IEEE Trans. on Signal Processing, 2019, 67 (7): 1728- 1741.
doi: 10.1109/TSP.2019.2897954 |
31 |
SHAIKH A H, DANG X Y, KHOSO I A, et al Three-stage padding configuration for sparse arrays with larger continuous virtual aperture and increased degrees of freedom. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, 2022, E105-A (3): 549- 561.
doi: 10.1587/transfun.2021EAP1018 |
32 |
SHAIKH A H, DANG X Y, HUANG D Q A pentad-displaced ULAs configuration with hole-free co-array and increased degrees of freedom for direction of arrival estimation. Digital Signal Processing, 2021, 118 (11): 103243.
doi: 10.1016/j.dsp.2021.103243 |
33 |
WAN L T, LIU K H, LIANG Y C, et al DOA and polarization estimation for non-circular signals in 3-D millimeter wave polarized massive MIMO systems. IEEE Trans. on Wireless Communications, 2021, 20 (5): 3152- 3167.
doi: 10.1109/TWC.2020.3047866 |
34 |
GOWRI K, PALANISAMY P, AMIRI I S Improved method of direction finding for non circular signals with wavelet denoising using three parallel uniform linear arrays. Wireless Personal Communications, 2020, 115 (1): 291- 305.
doi: 10.1007/s11277-020-07571-0 |
35 | TENG L P, WANG Q, CHEN H. 1-Bit DOA estimation algorithm for strictly non-circular sources. IEEE Communications Letters, 2021, 25 (7): 2216−2220. |
36 |
CAI J J, LIU W, ZONG R, et al Sparse array extension for non-circular signals with subspace and compressive sensing based DOA estimation methods. Signal Processing, 2018, 145 (4): 59- 67.
doi: 10.1016/j.sigpro.2017.11.012 |
37 |
GUPTA P, AGRAWAL M Design and analysis of the sparse array for doa estimation of noncircular signals. IEEE Trans. on Signal Processing, 2019, 67 (2): 460- 473.
doi: 10.1109/TSP.2018.2883035 |
38 | IWAZAKI S, ICHIGE K Underdetermined direction of arrival estimation by sum and difference composite co-array. Proc. of the IEEE 25th International Conference on Electronics, Circuits and Systems, 2018, 669- 672. |
39 | ZHANG Y K, XU H Y, WANG D M, et al. A novel designed sparse array for noncircular sources with high degree of freedom. Mathematical Problems in Engineering, 2019: 1264715. |
40 |
SHAIKH A H, DANG X Y, KHOSO I A, et al New sparse array for non-circular sources with increased degrees of freedom. Electronics Letters, 2021, 57 (8): 339- 342.
doi: 10.1049/ell2.12000 |
[1] | Tao WU, Zhenghong DENG, Xiaoxiang HU, Ao LI, Jiwei XU. DOA estimation of incoherently distributed sources using importance sampling maximum likelihood [J]. Journal of Systems Engineering and Electronics, 2022, 33(4): 845-855. |
[2] | Ying CHEN, Xiang WANG, Zhitao HUANG. Underdetermined DOA estimation via multiple time-delay covariance matrices and deep residual network [J]. Journal of Systems Engineering and Electronics, 2021, 32(6): 1354-1363. |
[3] | Fenggang Yan, Yi Shen, Ming Jin, and Xiaolin Qiao. Computationally efficient direction finding using polynomial rooting with reduced-order and real-valued computations [J]. Systems Engineering and Electronics, 2016, 27(4): 739-. |
[4] | Xionghou Liu, Chao Sun, Yixin Yang, Jie Zhuo, and Yina Han. Low complexity MIMO sonar imaging using a virtual sparse linear array [J]. Journal of Systems Engineering and Electronics, 2016, 27(2): 370-378. |
[5] | Hongqi Yu, David Day-Uei Li, Kun Zhang, Jietao Diao, and Haijun Liu. Wideband direction-of-arrival estimation based on cubic spline function [J]. Journal of Systems Engineering and Electronics, 2015, 26(4): 688-. |
[6] | Lei Shen, Zhiwen Liu, Xiaoming Gou, and Yougen Xu. Polynomial-rooting based fourth-order MUSIC for direction-of-arrival estimation of noncircular signals [J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 942-948. |
[7] | Xiang Wang, Zhitao Huang, and Yiyu Zhou. Underdetermined DOA estimation and blind separation of non-disjoint sources in time-frequency domain based on sparse representation method [J]. Journal of Systems Engineering and Electronics, 2014, 25(1): 17-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||