Complex systems widely exist in nature and human society. There are complex interactions between system elements in a complex system, and systems show complex features at the macro level, such as emergence, self-organization, uncertainty, and dynamics. These complex features make it difficult to understand the internal operation mechanism of complex systems. Networked modeling of complex systems is a favorable means of understanding complex systems. It not only represents complex interactions but also reflects essential attributes of complex systems. This paper summarizes the research progress of complex systems modeling and analysis from the perspective of network science, including networked modeling, vital node analysis, network invulnerability analysis, network disintegration analysis, resilience analysis, complex network link prediction, and the attacker-defender game in complex networks. In addition, this paper presents some points of view on the trend and focus of future research on network analysis of complex systems.
The contribution rate of equipment system-of-systems architecture (ESoSA) is an important index to evaluate the equipment update, development, and architecture optimization. Since the traditional ESoSA contribution rate evaluation method does not make full use of the fuzzy information and uncertain information in the equipment system-of-systems (ESoS), and the Bayesian network is an effective tool to solve the uncertain information, a new ESoSA contribution rate evaluation method based on the fuzzy Bayesian network (FBN) is proposed. Firstly, based on the operation loop theory, an ESoSA is constructed considering three aspects: reconnaissance equipment, decision equipment, and strike equipment. Next, the fuzzy set theory is introduced to construct the FBN of ESoSA to deal with fuzzy information and uncertain information. Furthermore, the fuzzy importance index of the root node of the FBN is used to calculate the contribution rate of the ESoSA, and the ESoSA contribution rate evaluation model based on the root node fuzzy importance is established. Finally, the feasibility and rationality of this method are validated via an empirical case study of aviation ESoSA. Compared with traditional methods, the evaluation method based on FBN takes various failure states of equipment into consideration, is free of acquiring accurate probability of traditional equipment failure, and models the uncertainty of the relationship between equipment. The proposed method not only supplements and improves the ESoSA contribution rate assessment method, but also broadens the application scope of the Bayesian network.
The concept of unmanned weapon system-of-systems (UWSoS) involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission. The mission reliability of UWSoS is represented by its ability to finish a required mission above the baselines of a given mission. However, issues with heterogeneity, cooperation between systems, and the emergence of UWSoS cannot be effectively solved by traditional system reliability methods. This study proposes an effective operation-loop-based mission reliability evaluation method for UWSoS by analyzing dynamic reconfiguration. First, we present a new connotation of an effective operation loop by considering the allocation of operational entities and physical resource constraints. Then, we propose an effective operation-loop-based mission reliability model for a heterogeneous UWSoS according to the mission baseline. Moreover, a mission reliability evaluation algorithm is proposed under random external shocks and topology reconfiguration, revealing the evolution law of the effective operation loop and mission reliability. Finally, a typical 60-unmanned-aerial-vehicle-swarm is taken as an example to demonstrate the proposed models and methods. The mission reliability is achieved by considering external shocks, which can serve as a reference for evaluating and improving the effectiveness of UWSoS.
Autonomous cooperation of unmanned swarms is the research focus on “new combat forces” and “disruptive technologies” in military fields. The mechanism design is the fundamental way to realize autonomous cooperation. Facing the realistic requirements of a swarm network dynamic adjustment under the background of high dynamics and strong confrontation and aiming at the optimization of the coordination level, an adaptive dynamic reconfiguration mechanism of unmanned swarm topology based on an evolutionary game is designed. This paper analyzes military requirements and proposes the basic framework of autonomous cooperation of unmanned swarms, including the emergence of swarm intelligence, information network construction and collaborative mechanism design. Then, based on the framework, the adaptive dynamic reconfiguration mechanism is discussed in detail from two aspects: topology dynamics and strategy dynamics. Next, the unmanned swarms’ community network is designed, and the network characteristics are analyzed. Moreover, the mechanism characteristics are analyzed by numerical simulation, focusing on the impact of key parameters, such as cost, benefit coefficient and adjustment rate on the level of swarm cooperation. Finally, the conclusion is made, which is expected to provide a theoretical reference and decision support for cooperative mode design and combat effectiveness generation of unmanned swarm operations.
Event prediction aims to predict the most possible following event given a chain of closely related context events. Previous methods based on event pairs or the entire event chain may ignore much structural and semantic information. Current datasets for event prediction, naturally, can be used for supervised learning. Event chains are either from document-level procedural action flow, or from news sequences under the same column. This paper leverages graph structure knowledge of event triggers and event segment information for event prediction with general news corpus, and adopts the standard multiple choice narrative cloze task evaluation. The topic model is utilized to extract event chains from the news corpus to deal with training data bottleneck. Based on trigger-guided structural relations in the event chains, we construct trigger evolution graph, and trigger representations are learned through graph convolutional neural network and the novel neighbor selection strategy. Then there are features of two levels for each event, namely, text level semantic feature and trigger level structural feature. We design the attention mechanism to learn the features of event segments derived in term of event major subjects, and integrate relevance between event segments and the candidate event. The most possible next event is picked by the relevance. Experimental results on the real-world news corpus verify the effectiveness of the proposed model.
A system of systems (SoS) composes a set of independent constituent systems (CSs), where the degree of authority to control the independence of CSs varies, depending on different SoS types. Key researchers describe four SoS types with descending levels of central authority: directed, acknowledged, collaborative and virtual. Although the definitions have been recognized in SoS engineering, what is challenging is the difficulty of translating these definitions into models and simulation environments. Thus, we provide a goal-based method including a mathematical baseline to translate these definitions into more effective agent-based modeling and simulations. First, we construct the theoretical models of CS and SoS. Based on the theoretical models, we analyze the degree of authority influenced by SoS characteristics. Next, we propose a definition of SoS types by quantitatively explaining the degree of authority. Finally, we recognize the differences between acknowledged SoS and collaborative SoS using a migrating waterfowl flock by an agent-based model (ABM) simulation. This paper contributes to the SoS body of knowledge by increasing our understanding of the degree of authority in an SoS, so we may identify suitable SoS types to achieve SoS goals by modeling and simulation.