Journal of Systems Engineering and Electronics ›› 2014, Vol. 25 ›› Issue (4): 671-.doi: 10.1109/JSEE.2014.00077

• CONTROL THEORY AND APPLICATION • Previous Articles     Next Articles

Distributed tracking for networked Euler-Lagrange systems without velocity measurements

Qingkai Yang1,2, Hao Fang1,2,*, Yutian Mao1,2, and Jie Huang1,2   

  1. 1. School of Automation, Beijing Institute of Technology, Beijing 100081, China;
    2. Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing 100081, China
  • Online:2014-08-22 Published:2010-01-03

Abstract:

The problem of distributed coordinated tracking control for networked Euler-Lagrange systems without velocity measurements is investigated. Under the condition that only a portion of the followers have access to the leader, sliding mode estimators are developed to estimate the states of the dynamic leader in finite time. To cope with the absence of velocity measurements, the distributed observers which only use position information are designed. Based on the outputs of the estimators and observers, distributed tracking control laws are proposed such that all the followers with parameter uncertainties can track the dynamic leader under a directed graph containing a spanning tree. It is shown that the distributed observer-controller guarantees asymptotical stability of the closed-loop system. Numerical simulations are worked out to illustrate the effectiveness of the control laws.